Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 24, 2022

The crystal structure of poly[diaqua-(μ3-5-nitrobenzene-1,2,3-tricarboxylato-κ3O:O′:O′)-(μ2-4,4′-dipyridylamine-κ2N:N′)copper(II)], C38H30Cu3N8O20

  • Dong-Feng Hong ORCID logo EMAIL logo , Ye Chen and Wen-Li Zhu

Abstract

C38H30Cu3N8O20, triclinic, P 1 (no. 2), a = 7.2659(3) Å, b = 11.7245(3) Å, c = 12.6837(4) Å, α = 77.466(3)°, β = 73.915(3)°, γ = 75.794(3)°, V = 993.50(6) Å3, Z = 1, R gt (F) = 0.0334, wR ref (F2) = 0.0842, T = 291 K.

CCDC no.: 1915588

A part of the polymeric title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Violet block
Size: 0.32 × 0.27 × 0.23 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.69 mm−1
Diffractometer, scan mode: SuperNova, ω
θmax, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 12,847, 3694, 0.027
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3279
N(param)refined: 315
Programs: CrysAlisPRO [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Cu1 0.98971 (5) 0.46012 (3) 0.67007 (3) 0.02904 (12)
Cu2 0.5000 0.0000 1.0000 0.02065 (13)
O1 0.8797 (3) 0.32333 (16) 0.67205 (15) 0.0266 (4)
O2 0.6156 (4) 0.42361 (19) 0.60852 (19) 0.0476 (6)
O3 0.5864 (3) 0.02127 (17) 0.83849 (14) 0.0299 (5)
O4 0.5375 (3) 0.22050 (18) 0.81274 (15) 0.0314 (5)
O5 0.9523 (3) 0.38562 (16) 0.41512 (15) 0.0284 (4)
O6 0.8209 (4) 0.3406 (2) 0.29458 (17) 0.0493 (7)
O7 1.2280 (3) 0.38774 (19) 0.56804 (19) 0.0437 (6)
H7A 1.2557 0.4372 0.5075 0.066*
H7B 1.2058 0.3289 0.5459 0.066*
O8 1.2015 (3) 0.4228 (2) 0.79244 (18) 0.0424 (5)
H8A 1.2484 0.4838 0.7880 0.064*
H8B 1.3028 0.3707 0.7722 0.064*
O9 0.7941 (4) −0.0814 (2) 0.35523 (17) 0.0445 (6)
O10 0.7030 (4) −0.17260 (19) 0.52149 (19) 0.0462 (6)
N1 0.7795 (3) 0.5413 (2) 0.78330 (19) 0.0282 (5)
N2 −0.2345 (3) 0.9066 (2) 1.00702 (17) 0.0231 (5)
N3 0.3448 (3) 0.7372 (2) 1.0063 (2) 0.0343 (6)
H3 0.3812 0.7448 1.0630 0.041*
N4 0.7493 (3) −0.0857 (2) 0.4555 (2) 0.0281 (5)
C1 0.7399 (4) 0.3342 (2) 0.6261 (2) 0.0253 (6)
C2 0.7378 (4) 0.2217 (2) 0.5839 (2) 0.0194 (5)
C3 0.6750 (4) 0.1219 (2) 0.6555 (2) 0.0197 (5)
C4 0.6822 (4) 0.0202 (2) 0.6141 (2) 0.0216 (5)
H4 0.6445 −0.0468 0.6618 0.026*
C5 0.7465 (4) 0.0202 (2) 0.5004 (2) 0.0215 (5)
C6 0.8026 (4) 0.1179 (2) 0.4281 (2) 0.0228 (6)
H6 0.8415 0.1166 0.3520 0.027*
C7 0.8007 (4) 0.2188 (2) 0.4695 (2) 0.0210 (5)
C8 0.5927 (4) 0.1239 (3) 0.7786 (2) 0.0228 (6)
C9 0.8624 (4) 0.3236 (2) 0.3851 (2) 0.0247 (6)
C10 0.7851 (4) 0.5321 (3) 0.8903 (2) 0.0326 (7)
H10 0.8881 0.4793 0.9154 0.039*
C11 0.6457 (4) 0.5972 (3) 0.9636 (2) 0.0331 (7)
H11 0.6560 0.5884 1.0366 0.040*
C12 0.4887 (4) 0.6763 (3) 0.9289 (2) 0.0274 (6)
C13 0.4908 (4) 0.6914 (3) 0.8165 (2) 0.0340 (7)
H13 0.3960 0.7485 0.7875 0.041*
C14 0.6340 (4) 0.6215 (3) 0.7492 (2) 0.0351 (7)
H14 0.6294 0.6305 0.6752 0.042*
C15 0.1519 (4) 0.7872 (2) 1.0055 (2) 0.0260 (6)
C16 0.0599 (4) 0.7793 (3) 0.9251 (2) 0.0296 (6)
H16 0.1253 0.7332 0.8697 0.036*
C17 −0.1286 (4) 0.8405 (3) 0.9287 (2) 0.0275 (6)
H17 −0.1863 0.8357 0.8733 0.033*
C18 −0.1501 (4) 0.9055 (2) 1.0895 (2) 0.0251 (6)
H18 −0.2234 0.9456 1.1480 0.030*
C19 0.0376 (4) 0.8485 (3) 1.0919 (2) 0.0267 (6)
H19 0.0888 0.8505 1.1508 0.032*

Source of material

All chemicals were used without further purification. The title compound was prepared under the hydrothermal conditions by the following procedure: a mixture of 5-nitro-1,2,3-benzenetricarboxylic acid (0.1 mmol, 0.026 g), Cu(OAc)2 ·H2O (0.1 mmol, 0.020 g), 4,4′-dipyridylamine (0.1 mmol, 0.017 g), and deionized water (6 mL) was sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 413 K for three days. After cooling to room temperature at a rate of 5 Kh−1, purple block crystals were collected by filtration and washed with distilled water in 37% yield (based on Cu).

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

The design and construction of coordination polymers is of current interest in the fields of crystal engineering and supramolecular chemistry, not only for their structural diversities and intriguing topologies, but also for their applications as functional materials [5], [6], [7], [8]. In the processes of synthesizing desired coordination polymers, the choice of organic ligands, central metal ions, the temperature, the ratio of solvent, and counterions are important factors in construction of target coordination polymers. It is worth mentioned that aromatic multicarboxylates such as 1,3-benzenedicarboxylate, 1,4-benzenedicarboxylate, 1,3,5-benzenetricarboxylic acid, and 5-nitro-1,2,3-benzenetricarboxylate (nbta) as organic ligands have been widely used to construct various coordination polymers [9], [10], [11], [12]. On the other hand, 4,4′-dipyridylamine (dpa), as a flexible dipyridyl coligand, has attracted significant attention during the construction of coordination polymers [13], [14], [15]. Here, we present a new Cu(II) coordination polymer based on nbta and dpa.

The title compound was prepared under mild hydrothermal conditions. Single crystal X-ray structural analysis shows that the compound is a layered structure and crystallizes in the triclinic space group P 1 . The asymmetric unit consists of one and half Cu(II) centers, one dpa ligand, one fully deprotonated nbta ligand, and two coordinated water molecules. The five-coordinated Cu1 atom is in a distorted square-pyramidal environment coordinated by two carboxylate oxygen atoms rom two different nbta ligands, one pyridyl nitrogen atom from one dpa ligand and two coordinated water molecules. The four-coordinated Cu2 atom is in an almost perfect square-planar environment with the CuO2N2 chromophore satisfied by carboxylate oxygen atoms from two nbta ligands and two pyridyl nitrogen atoms from two dpa ligands. The Cu–O/N distances associated with central Cu atoms are in the range of 1.9481(17)–2.381(2) Å, which are within the normal ranges. The Cu(II) ions are interconnected by carboxylate groups of μ3-bridging nbta ligands, giving a chain structure. Interestingly, these chains are further linked by dpa ligands to generate a layered structure.


Corresponding author: Dong-Feng Hong, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

Funding source: Luoyang Normal University

Award Identifier / Grant number: (DT2100009147)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the grants from Luoyang Normal University (DT2100009147).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO Software system (version 1.171.39.46); Agilent Technologies UK Ltd: Oxford, UK, 2018.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Mohamedally, K. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 8, 1353–1379.10.1039/b804757jSearch in Google Scholar

6. Silva, P., Vilela, S. M., Tomé, J. P., Paz, F. A. A multifunctional metal–organic frameworks: from academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774–6803; https://doi.org/10.1039/c5cs00307e.Search in Google Scholar

7. Wang, Z., Hu, B., Qi, X., Shen, N., Huang, X. Microwave-assisted ionothermal synthesis of a water-stable Eu-coordination polymer: Ba2+ ion detector and fluorescence thermometer. Dalton Trans. 2016, 45, 8745–8752; https://doi.org/10.1039/c6dt00641h.Search in Google Scholar

8. Wu, Z., Tan, B., Wang, J., Du, C., Deng, Z., Huang, X. Tunable photoluminescence and direct white-light emission in Mg-based coordination networks. Chem. Commun. 2015, 51, 157–160; https://doi.org/10.1039/c4cc07634f.Search in Google Scholar

9. Zhu, X., Wang, N., Luo, Y., Pang, Y., Tian, D., Zhang, H. Three novel polymeric CoII/CuII complexes assembled from 5-nitro-1,2,3-benzenetricarboxylate and 4,4′-bipyridine: syntheses, crystal structures, and magnetic properties. Aust. J. Chem. 2011, 64, 1346–1354; https://doi.org/10.1071/ch10431.Search in Google Scholar

10. Shi, C., Wang, Z., Chen, Y., Zhang, X., Zhao, Y., Tao, Y., Wu, H. Structural diversity of four coordination polymers based on 5-nitro-1,2,3-benzenetricarboxylic acid (H3nbta): solvothermal syntheses, structural characterizations and properties. J. Solid State Chem. 2017, 253, 35–42; https://doi.org/10.1016/j.jssc.2017.05.010.Search in Google Scholar

11. Wang, X., Li, Z., Yu, B., Van Hecke, K., Cui, G. Synthesis and characterizations of a bis(triazole)-based 3D crystalline copper(II) MOF with high adsorption capacity for congo red dye. Inorg. Chem. Commun. 2015, 54, 9–11; https://doi.org/10.1016/j.inoche.2015.01.030.Search in Google Scholar

12. He, J., Zhang, Y., Pan, Q., Yu, J., Ding, H., Xu, R. Three metal-organic frameworks prepared from mixed solvents of DMF and HAc. Microporous Mesoporous Mater. 2006, 90, 145–152; https://doi.org/10.1016/j.micromeso.2005.11.049.Search in Google Scholar

13. Cordes, D. B., Hanton, L. R., Spicer, M. D. Helices versus zigzag chains: one-dimensional coordination polymers of AgI and bis(4-pyridyl)amine. Inorg. Chem. 2006, 45, 7651–7664; https://doi.org/10.1021/ic060487y.Search in Google Scholar

14. Krishnan, S. M., Montney, M. R., LaDuca, R. L. Two-dimensional divalent metal/pimelate coordination polymers incorporating dipodal organodiimines: crystal structures, thermal properties, and magnetic studies. Polyhedron 2008, 27, 821–834; https://doi.org/10.1016/j.poly.2007.11.006.Search in Google Scholar

15. Lucas, J. S., Bell, L. D., Gandolfo, C. M., LaDuca, R. L. Substituent dependent dimensionalities in cobalt isophthalate supramolecular complexes and coordination polymers containing dipyridylamine ligands. Inorg. Chim. Acta 2011, 378, 269–279; https://doi.org/10.1016/j.ica.2011.09.016.Search in Google Scholar

Received: 2022-01-22
Accepted: 2022-03-14
Published Online: 2022-03-24
Published in Print: 2022-06-27

© 2022 Dong-Feng Hong et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0040/html
Scroll to top button