Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) April 15, 2022

The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2

  • Jun Zheng , Sen Liu , Yaru Zhang and Xianqiang Huang ORCID logo EMAIL logo

Abstract

C25H23ClO2, orthorhombic, P212121, a = 5.5648(5) Å, b = 17.6062(15) Å, c = 21.5033(19) Å, V = 2106.8(3) Å3, Z = 4, R gt (F) = 0.0529, wR ref (F 2) = 0.1371, T = 298 K.

CCDC no.: 2164522

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.13 × 0.12 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.20 mm−1
Diffractometer, scan mode: Bruker SMART, φ and ω-scans
θ max, completeness: 25°, >99%
N(hkl)measured, N(hkl)unique, R int: 10,728, 3700, 0.077
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 1931
N(param)refined: 255
Programs: Bruker programs [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z U iso*/U eq
O1 1.2006 (7) 0.0135 (2) 0.33311 (17) 0.0952 (12)
O2 1.0145 (9) 0.0085 (2) 0.11194 (17) 0.1138 (14)
Cl1 0.7099 (3) −0.31333 (8) 0.25143 (9) 0.1188 (7)
C1 0.9177 (14) 0.1757 (4) 0.5917 (3) 0.131 (2)
H1A 0.875125 0.135156 0.619460 0.197*
H1B 0.792941 0.213345 0.591814 0.197*
H1C 1.065782 0.198344 0.605179 0.197*
C2 0.9482 (13) 0.1446 (3) 0.5267 (3) 0.0880 (16)
C3 1.1334 (12) 0.0989 (3) 0.5114 (3) 0.0978 (16)
H3 1.248065 0.087287 0.541413 0.117*
C4 1.1570 (12) 0.0693 (3) 0.4531 (3) 0.0924 (15)
H4 1.287364 0.038084 0.444201 0.111*
C5 0.7814 (12) 0.1598 (3) 0.4825 (3) 0.0926 (15)
H5 0.650418 0.190386 0.492231 0.111*
C6 0.8031 (10) 0.1306 (3) 0.4229 (2) 0.0831 (14)
H6 0.687548 0.142178 0.393114 0.100*
C7 0.9929 (10) 0.0847 (3) 0.4072 (2) 0.0703 (12)
C8 1.0245 (10) 0.0508 (3) 0.3449 (2) 0.0690 (12)
C9 0.8354 (9) 0.0637 (3) 0.2968 (2) 0.0687 (12)
H9A 0.822426 0.117790 0.288945 0.082*
H9B 0.682109 0.046527 0.313087 0.082*
C10 0.8845 (9) 0.0228 (2) 0.2351 (2) 0.0658 (12)
H10 1.054317 0.030387 0.224701 0.079*
C11 0.7336 (10) 0.0584 (3) 0.1830 (2) 0.0732 (13)
H11A 0.572474 0.037491 0.184778 0.088*
H11B 0.721611 0.112629 0.190217 0.088*
C12 0.8334 (11) 0.0455 (3) 0.1189 (2) 0.0776 (13)
C13 0.7105 (10) 0.0809 (3) 0.0653 (2) 0.0755 (13)
C14 0.5094 (12) 0.1237 (3) 0.0701 (3) 0.0929 (15)
H14 0.437999 0.130434 0.108793 0.111*
C15 0.4096 (12) 0.1572 (3) 0.0188 (3) 0.1040 (17)
H15 0.272539 0.186788 0.023594 0.125*
C16 0.8138 (12) 0.0726 (3) 0.0068 (3) 0.0957 (15)
H16 0.953902 0.044343 0.002119 0.115*
C17 0.7090 (13) 0.1060 (3) −0.0441 (3) 0.1007 (17)
H17 0.779074 0.099580 −0.083047 0.121*
C18 0.5050 (13) 0.1484 (3) −0.0392 (3) 0.0953 (16)
C19 0.3939 (14) 0.1853 (4) −0.0957 (3) 0.136 (3)
H19A 0.260560 0.216257 −0.083141 0.204*
H19B 0.338794 0.146651 −0.123848 0.204*
H19C 0.511707 0.216317 −0.116167 0.204*
C20 0.8414 (8) −0.0616 (2) 0.2409 (2) 0.0606 (11)
C21 0.6331 (9) −0.0915 (3) 0.2670 (2) 0.0690 (12)
H21 0.515975 −0.058841 0.282371 0.083*
C22 0.5985 (9) −0.1682 (3) 0.2704 (2) 0.0728 (13)
H22 0.458318 −0.186939 0.288246 0.087*
C23 1.0093 (9) −0.1127 (2) 0.2188 (2) 0.0665 (12)
H23 1.150957 −0.094801 0.201076 0.080*
C24 0.9695 (9) −0.1900 (3) 0.2226 (2) 0.0703 (13)
H24 1.084460 −0.223609 0.207572 0.084*
C25 0.7641 (9) −0.2172 (2) 0.2483 (2) 0.0677 (12)

Source of materials

In a typical experiment, 4-chlorobenzaldehyde (0.5 mmol), 4-methylacetophenone (1 mmol) and commercial powdered NaOH (1 mmol) were crushed together for 60 min. After the reaction was completed, the mixture was washed by hot water and recystallized from methanol, the colourless crystals were achieved, yield: 81%.

Experimental details

All hydrogen atomic positions were taken from a difference Fourier map. Hydrogen atoms were assigned with common isotropic displacement factors U iso (H) = 1.2 times U eq (C, phenyl ring and methylene carbon) and U iso (H) = 1.5 times U eq (C, methyl). All the H atoms were refined as riding on their parent atom.

Comment

Aromatic 1,5-dione derivatives are one class of important building blocks for preparing organic functional materials [3]. Traditionally, the production process of 1,5-dione derivatives was prepared by the condensation reaction of aromatic aldehydes or chalcone derivatives with aromatic ketones using the NaO-/t-Bu, NaOH, NaOH-K2CO3 and metallic sodium as the base catalysts, respectively. Subsequently, a series of 1,5-dione derivatives has been reported and their related structures have been studied in detail, for instance, 1,5-bis(4-chlorophenyl)-3-(2-chloroquinolin-3-yl)pentane-1,5-dione [4], 1,5-bis(4-chlorophenyl)-3-(2-thienyl) pentane-1,5-dione [5], 3-(2-chlorophenyl)-1,5-bis-(4-chlorophenyl) pentane-1,5-dione [6], 3-(2-chlorophenyl)-1,5-bis(4-nitrophenyl)pentane-1,5-dione [7], 4-(1,5-bis(2-hydroxyphenyl)-1,5-dioxopentan-3-yl)benzonitrile [8], 1,3,5-triphenylpentane-1,5-dione [9], 1,5-(4-dichlorophenyl)-3-(2,5-dimethoxy-phenyl)pentane-1,5-dione [10], 3-phenyl-1,5-di-p-tolylpentane-1,5-dione [11], 3-(3-chlorophenyl)-1,5-bis(4-nitrophenyl)-pentane-1,5-dione [12], 1-(4-chlorophenyl)-3,5-diphenylpentane-1,5-dione [13], 3-(2-chlorophenyl)-1, 5-bis(4-chloro-phenyl)pentane-1,5-dione [14], 1,5-bis(4-chlorophenyl)-3-(4-methyl-phenyl)pentane-1,5-dione [15], 1,5-bis(4-methoxyphenyl)-3-phenylpentane-1,5-dione [16], 1,5-bis(4-bromophenyl)-3-phenyl-pentane-1,5-dione [17], 1,5-bis(4-chlorophenyl)-3-phenyl-pentane-1,5-dione [18], 1,5-bis(4-bromophenyl) 3-(3-nitrophenyl)-pentane-1,5-dione [19], and so on. However, to date, the structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione has not been reported.

In the title molecule, the central chlorobenzene ring and the two p-methylphenyl rings forms the dihedral angles of 88.366(2)° and 68.539(2)°, respectively, which reveals that two p-methylphenyl rings are almost perpendicular to the central chlorophenyl ring. The dihedral angle between the two p-methyl phenyl rings is 24.657(2)° [20, 21]. Additionally, the supermolecular structure of the title compound is stabilized by the weak C–H⋯O intramolecular hydrogen-bonding interactions.


Corresponding author: Xianqiang Huang, Shandong Provincial Key Laboratory of Chemical Energy, Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, China, E-mail:

Funding source: Liaocheng University

Award Identifier / Grant number: 263222017215

Award Identifier / Grant number: 263222017214

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge support by the Research on Experimental Technology of Liaocheng University (263222017215; 263222017214).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex2, Saint and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Kesatebrhan, H., Chan, C., Wang, C. One-pot synthesis of 1,5-diketones under a transition-metal-free condition: application in the synthesis of 2,4,6-triaryl pyridine derivatives. ACS Omega 2021, 6, 7296–7311.10.1021/acsomega.0c05328Search in Google Scholar

4. Insuasty, B., Torres, H., Cobo, J., Low, J., Glidewell, C. 1,5-Bis(4-chlorophenyl)-3-(2-chloroquinolin-3-yl)pentane-1,5-dione: sheets of R44 (26) rings built from C–H⋯N and C–H⋯O hydrogen bonds. Acta Crystallogr. 2006, C62, o39–o41; https://doi.org/10.1107/s0108270105039193.Search in Google Scholar

5. Huang, X., Xin, F., Shi, Q., Wang, Y., Wei, G. 1,5-Bis(4-chlorophenyl)-3-(2-thienyl)pentane-1,5-dione. Acta Crystallogr. 2008, E64, o2454; https://doi.org/10.1107/s1600536808038993.Search in Google Scholar

6. Lei, X., Bai, X. 1,5-Bis(4-chlorophenyl)-3-[4-(dimethylamino) phenyl] pentane-1,5-dione. Acta Crystallogr. 2009, E65, o514; https://doi.org/10.1107/s1600536809003894.Search in Google Scholar

7. Qiu, X., Ma, J., Liu, W. 3-(2-Chlorophenyl)-1,5-bis(4-nitrophenyl) pentane-1,5-dione. Acta Crystallogr. 2006, E62, o4565–o4566; https://doi.org/10.1107/s1600536806037512.Search in Google Scholar

8. Lu, L., Shen, Y., Yu, W., Yu, K., Wu, H. An international journal for rapid communication of synthetic organic chemistry. Synth. Commun. 2014, 36, 1193–1200.10.1080/00397910500514089Search in Google Scholar

9. Das, G., Hursthouse, M., Malik, K., Rahman, M., Rahman, M., Olsson, T. Preparation, spectral studies and X-ray crystal structure of 1,3,5-triphenyl-1,5-pentanedione, C23H20O2. J. Chem. Crystallogr. 1994, 24, 8; https://doi.org/10.1007/bf01666729.Search in Google Scholar

10. Teh, J., Patil, P., Fun, H., Dharmaprakash, S., Razaka, I., Kallurayac, B. 1,5-(4-dichlorophenyl)-3-(2,5-dimethoxy-phenyl)pentane-1,5-dione. Acta Crystallogr. 2006, E62, o5024–o5026; https://doi.org/10.1107/s1600536806039638.Search in Google Scholar

11. Wiesmann, U., DiDonato, S., Herschkowitz, N. Effect of chloroquine on cultured flbroblasts: release of lysosomal hydrolases and inhibition of their uptake. Biochem. Biophys. Res. Commun. 1975, 66, 4; https://doi.org/10.1016/0006-291x(75)90506-9.Search in Google Scholar

12. Qiu, X., Yang, S., Liu, W., Zhu, H. 3-(3-chlorophenyl)-1,5-bis (4-nitrophenyl)-pentane-1,5-dione. Acta Crystallogr. 2006, E62, o2533–o2534; https://doi.org/10.1107/s1600536806019477.Search in Google Scholar

13. Zhang, D., Su, Z., He, Q., Wu, Z., Zhou, Y., Pan, C., Liu, X., Feng, X. Diversified transformations of tetrahydroindolizines to construct chiral 3-arylindolizines and dicarbofunctionalized 1,5-diketones. J. Am. Chem. Soc. 2020, 142, 15975–15985; https://doi.org/10.1021/jacs.0c07066.Search in Google Scholar PubMed

14. Jasinski, J., Butcher, R., Yathirajan, H., Narayanad, B., Swamye, M. 3-(2-Chlorophenyl)-1, 5-bis(4-chloro-phenyl)pentane-1,5-dione. Acta Crystallogr. 2007, E63, o4808–o4809; https://doi.org/10.1107/s1600536807059089.Search in Google Scholar

15. Chithiravel, R., Thiruvalluvar, A., Muthusubramanianc, S., Butcher, R. 1,5-Bis(4-chlorophenyl)-3-(4-methyl-phenyl)pentane-1,5-dione. Acta Crystallogr. 2013, E69, o1508–o1509; https://doi.org/10.1107/s1600536813024355.Search in Google Scholar

16. Huang, X., Zhang, C., Dou, J., Li, D., Wang, D. 1,5-Bis(4-methoxyphenyl)-3-phenylpentane-1,5-dione. Acta Crystallogr. 2007, E63, o493–o494; https://doi.org/10.1107/s1600536806056315.Search in Google Scholar

17. Li, K., Chen, Y., Zhao, C., Wei, G., He, Q. 1,5-Bis(4-bromophenyl)-3-phenyl-pentane-1,5-dione. Acta Crystallogr. 2008, E64, o1665; https://doi.org/10.1107/s1600536808023970.Search in Google Scholar PubMed PubMed Central

18. Mo, X., Xie, Z., Liu, F. 1,5-Bis(4-chlorophenyl)-3-phenyl-pentane-1,5-dione. Acta Crystallogr. 2007, E63, o2804; https://doi.org/10.1107/s1600536807020405.Search in Google Scholar

19. Yathirajan, H., Malte, K., Narayana, B., Sreevidyab, T., Boltec, M. 1,5-Bis(4-bromophenyl) 3-(3-nitrophenyl)-pentane-1,5-dione. Acta Crystallogr. 2007, E63, o228–o229; https://doi.org/10.1107/s1600536806052585.Search in Google Scholar

20. Dutkiewicz, G., Chidan Kumar, C., Yathirajan, H., Narayana, B., Kubicki, M. 3-(3-Bromo-4-methoxyphenyl)-1,5-diphenylpentane-1,5-dione. Acta Crystallogr. 2010, E66, o816; https://doi.org/10.1107/s1600536810008548.Search in Google Scholar PubMed PubMed Central

21. Yin, Z., Xiong, C., Guo, J., Hu, X., Shan, Z., Borovkov, V. Highly chemoselective solvent-free synthesis of 1,3,5-triaryl-1,5-diketones: crystallographic investigation and intramolecular weak bifurcated H bonds involving aliphatic C–H group. Synlett 2019, 30, 2143–2147; https://doi.org/10.1055/s-0039-1690224.Search in Google Scholar

Received: 2022-03-08
Accepted: 2022-04-05
Published Online: 2022-04-15
Published in Print: 2022-08-26

© 2022 Jun Zheng et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0110/html
Scroll to top button