Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 22, 2022

Crystal structure of bis(tetrapropylammonium) nonaselenidotetrastannate(IV), (Pr4N)2[Sn4Se9]

  • Kang–Woo Kim ORCID logo EMAIL logo

Abstract

C24H56N2Sn4Se9, monoclinic, P21/n (no. 14), a = 15.3276(10) Å, b = 19.0577(15) Å, c = 15.3980(11) Å, β = 97.947(3)°, V = 4454.7(6) Å3, Z = 4, R gt (F) = 0.0313, wRref(F2) = 0.0686, T = 223 K.

CCDC no.: 2157679

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange rod
Size: 0.16 × 0.12 × 0.07 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 9.59 mm−1
Diffractometer, scan mode: PHOTON 100 CMOS, φ and ω
θmax, completeness: 28.3°, >99%
N(hkl)measured, N(hkl)unique, Rint: 145688, 11105, 0.083
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 8204
N(param)refined: 354
Programs: Bruker [1], SHELX [2], WinGX/ORTEP [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Sn1 0.22839 (2) 0.18670 (2) 0.41491 (2) 0.02694 (7)
Sn2 0.04329 (2) 0.18337 (2) 0.24021 (2) 0.02988 (7)
Sn3 0.04474 (2) 0.06094 (2) 0.43074 (2) 0.03384 (8)
Sn4 0.41750 (2) 0.25281 (2) 0.54790 (2) 0.03220 (8)
Se1 0.05478 (3) 0.21112 (2) 0.41239 (3) 0.02886 (10)
Se2 −0.02049 (3) 0.06289 (3) 0.26825 (3) 0.04200 (12)
Se3 0.21224 (3) 0.06136 (3) 0.46428 (3) 0.03648 (11)
Se4 −0.04247 (4) 0.07812 (3) 0.55504 (4) 0.04611 (13)
Se5 −0.05257 (3) 0.29271 (3) 0.20429 (3) 0.03519 (11)
Se6 0.21039 (3) 0.19795 (3) 0.24849 (3) 0.03350 (11)
Se7 0.40742 (3) 0.16978 (3) 0.42266 (3) 0.03900 (12)
Se8 0.25685 (3) 0.28928 (3) 0.52333 (3) 0.03312 (10)
Se9 0.02744 (3) 0.15127 (3) 0.06473 (3) 0.04989 (14)
N1 0.1984 (3) 0.4546 (2) 0.3183 (3) 0.0406 (9)
N2 0.1718 (3) 0.2987 (2) 0.7996 (3) 0.0506 (11)
C1 0.1257 (3) 0.4162 (3) 0.3564 (4) 0.0463 (12)
H1A 0.1094 0.3752 0.3203 0.056*
H1B 0.1494 0.3996 0.4144 0.056*
C2 0.0436 (4) 0.4577 (4) 0.3636 (5) 0.0716 (19)
H2A 0.0133 0.4676 0.3054 0.086*
H2B 0.0595 0.5021 0.3924 0.086*
C3 −0.0170 (4) 0.4178 (4) 0.4151 (5) 0.0746 (19)
H3A −0.0691 0.4451 0.4185 0.112*
H3B 0.0125 0.4089 0.4731 0.112*
H3C −0.0331 0.3741 0.3863 0.112*
C4 0.2712 (3) 0.4014 (3) 0.3137 (3) 0.0444 (12)
H4A 0.2896 0.3834 0.3723 0.053*
H4B 0.2471 0.3624 0.2776 0.053*
C5 0.3512 (4) 0.4284 (3) 0.2778 (4) 0.0645 (17)
H5A 0.3737 0.4699 0.3100 0.077*
H5B 0.3356 0.4413 0.2166 0.077*
C6 0.4213 (4) 0.3716 (4) 0.2862 (5) 0.081 (2)
H6A 0.4724 0.3885 0.2630 0.121*
H6B 0.3987 0.3308 0.2541 0.121*
H6C 0.4371 0.3596 0.3469 0.121*
C7 0.1645 (4) 0.4838 (3) 0.2280 (3) 0.0495 (13)
H7A 0.1158 0.5154 0.2332 0.059*
H7B 0.2110 0.5111 0.2075 0.059*
C8 0.1339 (5) 0.4286 (4) 0.1602 (4) 0.0750 (19)
H8A 0.1848 0.4053 0.1424 0.090*
H8B 0.0995 0.3936 0.1862 0.090*
C9 0.0793 (5) 0.4591 (4) 0.0812 (5) 0.086 (2)
H9A 0.0618 0.4225 0.0396 0.129*
H9B 0.1133 0.4935 0.0549 0.129*
H9C 0.0279 0.4810 0.0983 0.129*
C10 0.2313 (4) 0.5155 (3) 0.3761 (4) 0.0608 (16)
H10A 0.1821 0.5467 0.3806 0.073*
H10B 0.2737 0.5414 0.3474 0.073*
C11 0.2739 (6) 0.4972 (4) 0.4680 (5) 0.097 (3)
H11A 0.2380 0.4622 0.4923 0.117*
H11B 0.3312 0.4765 0.4650 0.117*
C12 0.2850 (6) 0.5586 (5) 0.5279 (6) 0.121 (4)
H12A 0.3111 0.5437 0.5851 0.182*
H12B 0.2285 0.5793 0.5316 0.182*
H12C 0.3224 0.5926 0.5056 0.182*
C13 0.2108 (4) 0.2352 (3) 0.7590 (4) 0.0584 (15)
H13A 0.2137 0.2453 0.6977 0.070*
H13B 0.2707 0.2287 0.7876 0.070*
C14 0.1615 (5) 0.1673 (4) 0.7645 (5) 0.086 (2)
H14A 0.1554 0.1579 0.8252 0.103*
H14B 0.1029 0.1719 0.7320 0.103*
C15 0.2073 (6) 0.1077 (5) 0.7288 (7) 0.124 (3)
H15A 0.1868 0.1028 0.6673 0.186*
H15B 0.1950 0.0653 0.7586 0.186*
H15C 0.2696 0.1161 0.7372 0.186*
C16 0.1748 (4) 0.2900 (3) 0.8971 (4) 0.0570 (15)
H16A 0.1390 0.2497 0.9076 0.068*
H16B 0.1480 0.3310 0.9198 0.068*
C17 0.2652 (5) 0.2802 (4) 0.9486 (4) 0.081 (2)
H17A 0.2895 0.2354 0.9342 0.097*
H17B 0.3045 0.3170 0.9340 0.097*
C18 0.2570 (6) 0.2830 (5) 1.0449 (5) 0.107 (3)
H18A 0.3143 0.2784 1.0786 0.161*
H18B 0.2200 0.2452 1.0592 0.161*
H18C 0.2314 0.3270 1.0582 0.161*
C19 0.0760 (4) 0.3063 (3) 0.7616 (4) 0.0618 (16)
H19A 0.0449 0.2650 0.7780 0.074*
H19B 0.0522 0.3464 0.7892 0.074*
C20 0.0554 (4) 0.3152 (5) 0.6642 (5) 0.094 (3)
H20A 0.0810 0.3588 0.6471 0.113*
H20B 0.0816 0.2770 0.6352 0.113*
C21 −0.0418 (5) 0.3162 (5) 0.6354 (6) 0.113 (3)
H21A −0.0536 0.3054 0.5740 0.169*
H21B −0.0646 0.3619 0.6456 0.169*
H21C −0.0697 0.2819 0.6681 0.169*
C22 0.2271 (4) 0.3611 (4) 0.7788 (5) 0.076 (2)
H22A 0.2885 0.3471 0.7889 0.091*
H22B 0.2128 0.3713 0.7167 0.091*
C23 0.2177 (7) 0.4281 (5) 0.8289 (9) 0.161 (5)
H23A 0.2257 0.4154 0.8905 0.193*
H23B 0.2676 0.4572 0.8201 0.193*
C24 0.1456 (6) 0.4703 (6) 0.8160 (9) 0.163 (5)
H24A 0.1534 0.5090 0.8563 0.244*
H24B 0.0944 0.4439 0.8257 0.244*
H24C 0.1379 0.4877 0.7570 0.244*

Source of material

The starting materials [CH3COCHC(O)CH3]2SnCl2 (0.020 g, 0.052 mmol), K2Se (0.016 g, 0.10 mmol) and Pr4NBr (0.028 g, 0.10 mmol) were charged to a Pyrex tube with diameter of 9 mm under an argon atmosphere and about 0.5 mL 1:2 (v/v) H2O/MeOH mixture was added as a solvent. While the solvent was being frozen, the Pyrex tube was evacuated under vacuum and sealed with the use of a flame. The sealed tube was placed in an oven and heated at 110 °C for a day, then cooled to room temperature. Orange red rectangular chunky crystals were isolated by filtration and washed with MeOH and diethyl ether several times. Crystals of (Pr4N)2[Sn4Se9] were obtained in 65% yield, based on the Sn metal used.

Experimental details

H atoms were positioned geometrically and treated as riding, with C–H = 0.97 (CH2) and 0.96 (CH3) Å with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). H atoms of the CH3 were positioned to be staggered with respect to the shortest other bond to the atom to which the CH3 is attached.

Comment

The title compound, (Pr4N)2[Sn4Se9], which has been prepared by the solvothermal reaction of [CH3COCHC(O)CH3]2SnCl2, K2Se and Pr4NBr with 1:2 (v/v) H2O/MeOH mixture as a solvent, is composed of a 2D polymeric, layered [Sn4Se9]2− anion and charge-balancing Pr4N+ cations (see upper part of the figure). (Pr4N)2[Sn4Se9] features to be a new member of A2Sn4Se9 (A = Rb, Cs, NH4, {Fe(bipy)3}0.5, (Bmmim)0.5{Ni(1,2-pda)3}0.25, (Bmmim)0.375(dienH)0.125{Ni(dien)2}0.25) family and the Se analogue of (Pr4N)2[Sn4S9] [5], [6], [7], [8], [9], [10], [11]. In the A2Sn4Se9 family, there exist three different structural types of the [Sn4Se9]2− anion. Small cations such as Rb+, Cs+, NH 4 + stabilize a 2D layered structure of [Sn4Se9]2− containing two 5-coordinate trigonal bipyramidal Sn and two 4-coordinate tetrahedral Sn [5, 6]. In the case including large transition metal complex cations such as {Fe(bipy)3}0.5, (Bmmim)0.5{Ni(1,2-pda)3}0.25, (Bmmim)0.375(dienH)0.125{Ni(dien)2}0.25, a 3D framework structure of [Sn4Se9]2− with all four Sn of 5-coordinate trigonal bipyramidal geometry have been stabilized [7], [8], [9]. In the new member, (Pr4N)2[Sn4Se9], a 2D layered structure of [Sn4Se9]2− with three 5-coordinate trigonal bipyramidal Sn and one 4-coordinate tetrahedral Sn has been stabilized.

(Pr4N)2[Sn4Se9] crystallizes in the space group P21/n, which is the same space group as the sulfur analogue, (Pr4N)2[Sn4S9] crystallizes in [10, 11]. As it can be seen from the top-view of the [Sn4Se9]2− layer of (Pr4N)2[Sn4Se9] (see the upper part of the figure), building units of the [Sn4Se9]2− layer are edge-shared two Sn3Se4 broken cubes and SnSe4 tetrahedra. The SnSe4 tetrahedra connect the edge-shared two Sn3Se4 broken cubes, forming large elliptical 32-membered rings. A closer inspection of the edge-shared two Sn3Se4 cubes reveals that the edge-sharing of two Sn3Se4 cubes is accomplished through μ2–Se (which is Se(9)) bridges. An asymmetric unit of Sn4Se9 is therefore composed of a Sn3Se4 broken cube, a Se bridge and a SnSe4 tetrahedron. There are three SnSe5 trigonal bipyramids in the edge-shared Sn3Se4 cube, with equatorial Sn–Se bond distances ranging from 2.5030(6) to 2.5687(6) Å and axial Sn–Se bond distances ranging from 2.6600(6) to 2.8822(6) Å. Sn–Se bond distances in the SnSe4 tetrahedron range from 2.4753(6) to 2.5410(5) Å. Another feature of the [Sn4Se9]2− layers in (Pr4N)2[Sn4Se9] is that they are quite corrugated running along the crystallographic b axis, as it can be seen from the side view of the layers (lower part of the figure).


Corresponding author: Kang–Woo Kim, Department of Chemistry & Research Institute for Natural Sciences, Incheon National University, Incheon, 22012, Korea, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Incheon National University Research Grant in 2017.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Loose, A., Sheldrick, W. S. Solventothermal synthesis of the lamellar selenidostannates(IV) A2Sn4Se9⋅H20 (A = Rb, Cs) and Cs2Sn2Se6. Z. Naturforsch. 1998, 53B, 349–354; https://doi.org/10.1515/znb-1998-0313.Search in Google Scholar

6. Wang, K.-Y., Liu, H.-W., Zhang, S., Ding, D., Cheng, L., Wang, C. Selenidostannates and a silver selenidostannate synthesized in deep eutectic solvents: crystal structures and thermochromic study. Inorg. Chem. 2019, 58, 2942–2953; https://doi.org/10.1021/acs.inorgchem.8b02610.Search in Google Scholar

7. Tang, C., Wang, F., Lu, J., Jia, D., Jiang, W., Zhang, Y. Novel one-, two-, and three-dimensional selenidostannates templated by iron(II) complex cation. Inorg. Chem. 2014, 53, 9267–9273; https://doi.org/10.1021/ic501381v.Search in Google Scholar

8. Du, C.-F., Shen, N.-N., Li, J.-R., Hao, M.-T., Wang, Z., Huang, X.-Y. Synthesizing 2D and 3D selenidostannates in ionic liquids: the synergistic structure-directing effects of ionic liquids and metal–amine complexes. Chem. Asian J. 2016, 11, 1555–1564; https://doi.org/10.1002/asia.201600073.Search in Google Scholar

9. Du, C.-F., Shen, N.-N., Li, J.-R., Hao, M.-T., Wang, Z., Cheng, C.-C., Huang, X.-Y. Two novel selenidostannates from mixed structure-directing systems: the large ten-membered ring of [Sn3Se4] semicubes and the 3D [Sn4Se9]n2n− with multi-channels. Dalton Trans. 2016, 45, 9523–9528; https://doi.org/10.1039/c6dt01482h.Search in Google Scholar

10. Jiang, T., Lough, A. J., Ozin, G. A., Young, D. Synthesis and structure of the novel nanoporous tin(IV) sulfide material TPA-SnS-3. Chem. Mater. 1995, 7, 245–248; https://doi.org/10.1021/cm00050a001.Search in Google Scholar

11. Ko, Y., Tan, K., Nellis, D. M., Koch, S., Parise, J. B. Novel two-dimensional tin sulfide networks: preparation and structural characterization of Sn4S9[(C3H7)4N]2 and Sn4S9[(C3H7)4N] ⋅ [(CH3)3NH]. J. Solid State Chem. 1995, 114, 506–511; https://doi.org/10.1006/jssc.1995.1076.Search in Google Scholar

Received: 2022-02-23
Accepted: 2022-03-11
Published Online: 2022-03-22
Published in Print: 2022-06-27

© 2022 Kang–Woo Kim, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0091/html
Scroll to top button