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Abstract 

This paper develops a mathematical model for condition-based maintenance optimization of multi-state systems. The 

majority of the existing literature on maintenance optimization assume that there is no additional cost incurred because 

of side effects of equipment degradation. Nevertheless, as the operating cost increases with equipment age and 

degradation, it is important to consider the degradation side effects in the maintenance decision-making process. An 

important feature of the proposed model lies in the fact that it incorporates side effect of degradation process into 

condition-based preventive maintenance optimization. We develop a continuous-time discrete-state Markov chain model 

describing the deterioration stochastic process of a single component. The component is modeled as a multi-state system, 

where each discrete state is characterized by a degradation level. Numerical examples show the importance of considering 

such side effect costs when optimizing the choice of maintenance policy. The proposed model is extended to deal with 

multi-state series systems. Using an example of a series system with two components, it is shown that preventive 

maintenance and side effect costs should not be optimized for each component individually, but from the perspective of 

the series system as a whole. 

 

Keywords- Maintenance, Degradation side effects, Multi-state systems, Markov chains, Optimization. 

 

 

 

1. Introduction 

As industrial devices are generally designed to operate for long periods, their performance is subject 

to progressive degradation until failure occurrence. During the last decades, degradation models 

have received a lot of attention for the analysis and design of highly reliable equipment (Eda et al., 

1980; Pan and Chen, 2015). Several physical failures of engineering systems can be linked to a 

more or less complex degradation phenomenon (Liu et al., 2016). The majority of systems are 

subject to an observable degradation process. The attributes of a degraded state can be measured 

over time, via indicators that change with the age of the equipment. Actually, the degradation is 

manifested by many signs of oldness, such as noise, changes in temperature, vibration, pressure, 

product quality, energy consumption, and air pollution. The development of accurate real-time 

sensing techniques and monitoring software have facilitated the detection of failure precursors and 

the forecast of degradation trends. This technological advancement has also facilitated the use of 

continuous-time stochastic models to characterize the degradation process (Lam and Banjevic, 



Wei et al.: Condition-based Maintenance Optimization of Degradable Systems 
 

 

2 | Vol. 7, No. 1, 2022 

2015). Such continuous-time modeling is suitable for the application of condition-based preventive 

maintenance as an efficient strategy to prevent random failures. 

 

The objective of any maintenance strategy is to find the best compromise between corrective and 

preventive actions. Compared to classical age-based and block-based strategies (Barlow and 

Hunter, 1960), condition-based preventive maintenance is usually more effective in reducing the 

total cost and increasing the system reliability and availability (Wu and Ryan, 2010; Liu et al., 

2017). This advantage is due to the fact that it relies on real-time information to determine the 

system health. There is a substantial literature dealing with the optimal replacement of continuously 

degrading systems (Flory et al., 2015), and the prognostic models to characterize the physical 

degradation phenomenon (Kang et al., 2020). It is possible to distinguish between two classes of 

the degradation states, namely discrete and continuous states (Liu et al., 2014; Kang et al., 2020). 

Considering continuous degradation states, a vast literature has considered stochastic models (Ye 

and Xie, 2015), based on Wiener process (Ye et al., 2013; Ye et al., 2015), Gamma process (Abdel-

Hameed, 1975; Kallen and Noortwijk, 2005), and inverse Gaussian process (Wang and Xu, 2010; 

Peng, 2015). Using a (continuous stochastic) Wiener process, a condition-based maintenance 

policy has been developed in Liu et al. (2017) for a degrading system with age and state dependent 

operating cost. The literature using discrete degradation states has been based on Markov chain 

models (Yin et al., 2013; Fitouhi et al., 2017), with each state characterizing a level of degradation. 

The estimated performance measures are generally related to availability (Yin et al., 2013), 

throughput (Fitouhi et al., 2017), or long-run cost rate (Liao, 2013). Some studies have also 

considered the problem of value-based maintenance policy (Marais and Saleh, 2009; Rosqvist et 

al., 2009). In the context of production planning, other papers have considered degradations in 

quality (Tagaras, 1988; Yeung et al., 2007; Xiang, 2013; Nourelfath et al., 2016; Fakher et al., 

2017; Kim and Sarkar, 2017; Gouiaa-Mtibaa et al., 2018), energy consumption (Jeon et al., 2015; 

Hoang et al., 2017; Zhou et al., 2020), and carbon dioxide (CO2) emission (Ba et al., 2016; Hajej 

et al, 2017; Singh et al., 2019). There is a link between energy consumption, CO2 emission, and the 

production rate. The relationships between the processing time, power energy consumption and the 

carbon emissions have been illustrated in An et al. (2020) for dry milling processes. 

 

It is important to consider the degradation side effects in the maintenance decision making process. 

In reality, degradation can be accompanied by side effects due to poor quality of a fraction of 

produced items, increased energy consumption and CO2 emission. However, the majority of the 

existing literature on maintenance optimization assume that there is no additional cost incurred 

because of side effects of equipment degradation. To develop an effective maintenance policy, it is 

therefore important to take into account such degradation effects in the assessment of the total 

operating cost. To answer this need, the present paper develops a continuous-time discrete-state 

Markov chain model to describe the deterioration stochastic process of a component, which is 

modeled as a multi-state system (MSS) where each discrete state is characterized by a degradation 

level (Lisnianski and Levitin, 2003). Unlike binary-state systems, the MSS has more than two levels 

of performance varying from perfect functioning to complete failure. An important feature of the 

proposed multi-state model lies in the fact that it takes into account side effect of degradation 

process into condition-based preventive maintenance optimization. The proposed model is 

extended to deal with multi-component multi-state series system. It is shown that preventive 

maintenance and side effect costs should not be optimized for each component individually, but 

from the perspective of the series system as a whole. 
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The remainder of this paper is organised as follows. Section 2 presents the multi-state model 

proposed to describe the degradation stochastic process and the condition-based maintenance 

policy. Section 3 presents the method used to integrate side effect cost in preventively maintained 

degrading systems. Section 4 extends the model to deal with multi-component series system. 

Numerical examples are presented in Sections 3 and 4 to illustrate the proposed approach. Finally, 

Section 5 concludes the paper and provides some research perspectives. 

 

2. Multi-state Model and Preventive Maintenance Policy 

2.1 Degradation Process 
During the system functioning, the operating cost increases along with the degraded level. This 

cost is a stochastic process, which depends on the degradation process. The system state space is 

discretized into several states characterized by different degradation levels. Even if systems can 

degrade continuously, to simplify the model, we assume that the degradation occurs in discrete 

steps. This is a good approximation if the system is discretized with enough steps to reflect the 

degradation. As time progresses, the system can go to the first degraded state, then to the second 

degraded state, and so forth, until reaching the complete failure state. The degradation process 

reflects the principle of the second law of thermodynamics, which states that there is a natural 

tendency of any isolated system to degenerate into a more disordered state, i.e., the entropy of an 

isolated system (disorder) increases with time. 

 

Example Figure 1 sketches a degraded system representation with four states, which are illustrated 

by colors according to their degradation levels. There are gradual changes with time in state 

attributes, ranging from perfect performance (green) to the worst case (red). The failure state in red 

is reached when the degradation exceeds the specified threshold. The other states (yellow and 

orange) correspond to intermediate degradation levels. Figure 1 also illustrates the state transition 

graph representing such gradual and irreversible degradation process with the arrow of time. 
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Figure 1. Illustration of a degraded system representation with four states. 
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2.2 Maintenance Policy Optimization 
We consider a condition-based preventive maintenance policy in which the degraded level of the 

system is continuously monitored. We assume that the condition of the system is always known 

exactly and that changes in its condition are observed immediately. The system states are divided 

into acceptable states and unacceptable states. The system entrance into any unacceptable state 

constitutes a failure. When the system reaches its last acceptable state, which is the failure 

threshold, a preventive maintenance (PM) is performed to restore the system to one of the previous 

higher performance states. In fact, if the degradation is not limited, the system's behavior will 

become unacceptable. To prevent this, the operator performs maintenance to avoid further 

degradation and to improve the condition of the system. Several kinds of PM actions are possible, 

varying from minor maintenance to major maintenance. A minor maintenance restores the system 

to the previous degraded state, while a major maintenance restores it to the ‘‘as good as new’’ state 

(i.e., the initial perfect functioning state). The cost and duration of the PM depends on the condition 

of the system when maintenance starts and its condition when it is completed. The start and end 

conditions are under the control of the maintenance operator. A PM strategy is defined as a pair 

composed of the last acceptable state before maintenance (the threshold failure state) and the 

operational state reached after maintenance. In the example of Figure 1, the last acceptable state is 

in orange, and two PM actions are possible to bring the system back, either to the perfect 

functioning state (in green), or to the intermediate state in yellow. 

 

Furthermore, the system might fail randomly from any operational state, i.e., from the perfect 

functioning state as well as from any degraded acceptable state. This random and sudden event, 

called Poisson failure, occurs abruptly unlike the gradually worsening deterioration failures. If the 

system fails after a Poisson failure, it is minimally repaired. When the minimal repair (MR) is 

completed, the system returns to the condition it was in when the failure occurred and operations 

resume. There is a cost to minimal repair, and that cost depends on the condition of the machine at 

the time of failure. 

 

Finally, we take into account catastrophic failures. This kind of failures terminate the system 

mission, and require replacement with a brand new system. We add transitions from each 

operational state to a catastrophic state from which we must perform a replacement by such new 

system. 

 

The studied optimization problems consist in minimizing the total cost or maximizing the 

production rate. The decision variables are related to the selection of the best PM strategy. The total 

cost is the sum of the maintenance costs and the operating costs. The maintenance costs are the MR 

cost, the PM cost, and the replacement cost. The operating costs are due to degradation and capture 

the side effect costs. Using our methodology, the selected PM strategy takes into account the trade-

off between maintenance and operating costs. 

 

2.3 Continuous-time Markov Chain Model 
To develop the multi-state model representing the degraded system subjected to the maintenance 

policy described above, we assume that all probability distributions are exponential and all the rates 

are known. The resulting continuous-time Markov chain model is represented by Figure 2. The 

meanings of states and transitions and all the notation used in this figure are presented in Table 1. 
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Figure 2. State-transition diagram for a multi-state degraded system subjected to condition-based 

preventive maintenance. 

 

 

Table 1. Notation used in figure 2. 
 

States 

Operational: 0 to n   Non-operational: n+1 to 2n+3  

Perfect (as good as new): State 0 Preventive maintenance state: n+1 

Degraded: States 1 to n; State m is reached after PM Minimal repair states: n+2 to 2n+2 

Last acceptable state: n Catastrophic state: 2n+3  

Transitions 

Degradation rates d1, …, dn+1  

Preventive maintenance rates  
1,n mμ +  

Failure rates  
0 ..., nλ λ   

Minimal repair rates 
0 ..., nμ μ   

Catastrophic failure rates 
0 ..., nψ ψ   

Renewal rate (after catastrophic failure)   η  

 

 

3. Integrating Side Effect Costs 

3.1 Operating Cost 
Incurred when the system is operational, the operating cost is related to side effects. The following 

notation is used: 

 

i Operational state index, i = 0, 1, 2, …, n 

i   Production rate in state i 

i  Fraction of non-conforming items produced when the system is in state i 
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iq  Cost incurred by producing one non-conforming item in state i 

QC  Cost of producing non-conforming items 

iS  Other side effect cost incurred in state i 

iP  Steady-state probability of the system being in state i 

 

For each operational state i, the fraction of conforming items is ( )1 i−  and the production rate of 

conforming items is given by ( )1i i−  . The cost of producing non-conforming items in state i is 

the product of the production rate of non-conforming items i i   and the unitary cost iq . The 

expected total cost of producing non-conforming items is 

1

n

Q i i i i

i

C q P
=

=                                                                                                                                                                            (1) 

 

The expected total side effect cost is 

1

n

E i i

i

S S P
=

=                                                                                                                                                                                   (2) 

 

As the system degradation increases with time, we have in general 1 2  ... 0;n       

1 20  ... ;n       1 20  ... ;nq q q     and 1 20 .nS S S     

 

The total operating cost, OC , is then given by 

( )
1

n

O i i i i i

i

C q S P
=

= +                                                                                                                                                            (3) 

 

3.2 Maintenance Cost 
To estimate the expected maintenance cost, the following additional notation is used: 

( )1,n m
c

+
 Cost of one preventive maintenance performed from state n+1 to state m 

ir  Cost of a minimal repair due to a Poisson failure in state i  

c  Cost of a repair due to a catastrophic failure  

 

The maintenance cost is the sum of the PM cost, the MR cost, and the cost of repair after 

catastrophic failures. Thus, the steady-state expected total maintenance cost, ( )1,MC n m+ , depends 

on PM strategy defined by the threshold state n+1 and the state m reached after PM. We have 

( ) ( ) 1 2 3 21,
0

1,
n

M n n i i nn m
i

C n m c P c P r P+ + + ++
=

+ = + +                                                                                                             (4) 

 

3.3 Cost Minimization 

The objective function to be minimized is the total cost, ( )1,TC n m+ , which is the sum of the 

maintenance and the operating costs. Using the above equations, we have 
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( ) ( ) ( )1 2 3 21,
0 1

1,
n n

T n n i i n i i i i in m
i i

C n m c P c P r P q S P+ + + ++
= =

+ = + + + +                                                                          (5) 

 

The goal of the optimization is to select the minimal cost PM strategy. This allows for the best 

trade-off between maintenance costs, quality costs and other side effect costs. Given the component 

parameters, the solution approach consists in comparing all the PM strategies by evaluating the 

total cost expressed in Equation (5). The decision variables are the threshold state n+1 and the state 

m reached after PM. For a given PM strategy (n+1, m), it is required to evaluate the probabilities 

in the Markov chain model of Figure 2. For this, the steady-state Chapman-Kolmogorov equations 

are represented as 
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and the normalization equation is 
2 3

0

1
n

i

i

P
+

=

=                                                                                                                                                                                       (7) 

 

The last row in Equation (6) is substituted by the normalization Equation (7) in order to obtain a 

system of (2n+4) linear equations with (2n+4) unknowns, which is solved to calculate the steady-

state probabilities iP . 

 

3.4 Numerical Example 

3.4.1 Input Data 
Let consider a multi-state degraded system for which the state-transition diagram is sketched in 

Figure 3. This system is subjected to a condition-based PM as in the proposed model. The state-

transition diagram can be sketched for all possible threshold states (1, 2, 3, 4). For example, Figure 

4 presents this diagram when the threshold state is n=3. Dotted lines indicate transitions to be 

selected: one PM action will be selected corresponding to one of the three possible transition rates 

( 3,2 ,
3,1, or )3,0 . 
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Figure 3. Example of multi-state degraded system. 
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Figure 4. Example of multi-state system subjected to PM. 

 

 

The input data required for the optimization problem studied in this example are provided in Tables 

2-4. Table 2 presents different transition rates and repair costs, while Table 3 specifically presents 

the PM transition rates with the corresponding costs. Table 4 presents the state attributes, namely 

production rates, percentages and costs of non-conforming products, and costs related to energy 
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consumption and emission. All costs are expressed in $ per day, transition rates are per day, and 

production rates are in parts per day. 

 

 
Table 2. Transition rates. 

 

Degradation rates ( )1 2 3 4, , ,d d d d   (0.016, 0.017, 0.018, 0.019) 

Failure rates ( )0 1 2 3, , ,      (0.031, 0.033, 0.036, 0.039) 

Minimal repair rates and costs ( ),  i ir  (0.2, 4000), (0.2, 5000), (0.2, 5500), (0.2, 6000) 

Catastrophic failure rates ( )0 1 2 3, , ,      (10-9, 10-9, 10-9, 10-9) 

Renewal rate and cost after catastrophic failure: ( η , c ) (0.033, 130000) 

 

 

Table 3. PM transition rates with the corresponding costs: ( ) ( )( )1, 1,
,  .

n m n m
c

+ +
  

 

 Threshold state (n+1) 

State reached after PM (m) 

 1 2 3 4 

0 (0.1, 14000) (0.09, 14500) (0.085, 14600) (0.08, 14700) 

1 − (0.1, 13000)  (0.09, 15000)  (0.05, 15100) 

2 − −  (0.1, 10000)  (0.09, 14000) 

3 − − −  (0.1, 8000) 

 

 
Table 4. State attributes. 

 

Production rates ( )0 1 2 3,  ,  ,       (1500, 1450, 1400, 1350) 

Fractions of non-conforming products ( )0 1 2 3, , ,      (0, 0.05, 0.06, 0.07)  

Cost of producing one non-conforming item ( )0 1 2 3, , ,q q q q  (−, 2, 3, 4) 

Side effect cost ( )0 1 2 3, , ,S S S S   (−, 213, 215, 330) 

 

 

3.4.2 Results and Discussion 
The results obtained by our optimization model are presented in Table 5. Figure 5 sketches a graph 

representing the total cost for each PM strategy. Rounding numbers to their nearest whole numbers, 

the best PM strategy has a total cost of 1656 $ per day, a PM cost of 788 $ per day, and an operating 

cost of 216 $ per day. This strategy recommends that when the system reaches the degradation 

threshold level characterized by State 3, it should be preventively maintained to occupy the perfect 

initial state. 

 

If the optimization model only considers maintenance costs (without taking into account the 

operating costs related to quality, energy and emissions), the results in Table 5 suggest strategy (4, 

0) instead of strategy (3, 0). This results in a loss of about 19 $ per day. This is due to the fact that 

the system degradation is allowed, which causes undesirable operating costs related to the 

production of non-conforming items and additional energy and emission costs. These results show 

that the proposed model integrating side effect costs provide a better solution than a model ignoring 

such side effects costs. 
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Table 5. Optimization model results. 
 

PM 

strategy 

(n+1, m) 

Quality 

cost 

Side effect 

cost 

Operating 

cost 

Repair 

cost 

PM 

cost 

Maintenance 

cost 

Total  

cost 

Production 

rate 

(conforming) 

(1, 0) 0 0 0 471.483 1703.422 2174.905 2174.905 1140.684 

(2, 0) 56.178 82.524 138.702 574.857 1061.142 1635.999 1774.701 1151.167 

(3, 0) 103.328 112.246 215.575 652.547 787.777 1440.324 1655.898 1136.919 

(4, 0) 150.618 148.552 299.17 723.756 652.366 1376.122 1675.292 1114.682 

(2, 1) 108.614 159.551 268.165 617.978 1655.431 2273.408 2541.573 1031.835 

(3, 1) 155.165 168.557 323.723 713.032 1147.873 1860.905 2184.628 1061.603 

(4, 1) 195.521 192.84 388.361 760.939 1391.835 2152.774 2541.135 1014.931 

(3, 2) 185.294 158.088 343.382 727.941 1323.529 2051.471 2394.853 967.647 

(4, 2) 242.866 210.036 452.902 835.324 1114.603 1949.927 2402.828 997.339 

(4, 3) 272.924 238.267 511.191 844.765 1097.473 1942.238 2453.43 906.498 
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Figure 5. Total cost for each PM strategy. 

 

 

4. Maintenance Optimization of Series Multi-state Degraded Systems 
In this section, we consider a multi-component series system. Each component is multi-state and is 

subjected to condition-based preventive maintenance. An optimization model is formulated to 

select the best preventive maintenance strategy for each component. Two optimization models are 

solved. In the first model, the objective is to define the optimal maintenance policy for each 

component, so that the total cost is minimized. The system performance is represented by the 

production rate of conforming items. In the second model, the objective function corresponds to 

the system production rate maximization. 

 

4.1 Optimization Model 
Let consider a system consisting of K components connected in series. We indicate by k (k = 1, 2, 

..., g) the index for components. As illustrated by Figure 6, each component is represented 

according to the multi-state model presented in the previous sections. 

 

Assuming that the components are independent, the bottleneck of the series system should be 

identified firstly due to the characteristics of unbalanced systems. For the bottleneck component, it 
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may operate at the full machine speed, bnPr . In contrast, other components operate at reduced 

machine speed. In this context, the system total cost, TC, is the sum of all components maintenance 

and operating costs denoted by OTC  and MTC  (respectively): 

 1 2

1 1 2 2

1 1 1

min , , ...,

min , , ...,

bn g

n n n
g g

i i i i i i

i i i

Pr Pr Pr Pr

P P P
= = =

=    

 
       =     

 
    

                                                                                                              (8) 
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          (9) 

 

The performance constraint may require that the conforming items production rate of the system, 

𝜋, should be equal or higher to a pre-specified minimum level minπ π : 

minπ π                                                                                                                                                                                       (10) 
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Figure 6. Multi-state series system. 
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As the components are connected in series, the component with the least performance becomes the 

bottleneck of the system. This component, therefore, defines the total system production rate. The 

decision variables are related to the selection of the best PM strategy for all components by selecting 

for all components the threshold states and the states reached after PM. Because of the system 

constraint (10), it is important to optimize preventive maintenance from the perspective of the series 

system as a whole. Using our model, it is also possible to consider the maximization of the system 

production rate as the objective function under eventual budget constraints. 

 

4.2 Numerical Results 
Consider a series system with two components. The input data for each component are given in 

Table 6. Furthermore, three PM strategies are possible for each component, namely strategies (4, 

1), (4, 2) and (4, 3) with transition rates and costs (0.05, 15100), (0.09, 14000) and (0.1, 8000), 

respectively. All data are the same for Components 1 and 2, except for the production rates. From 

these production rates, we remark that Component 2 is less efficient than Component 1. 

 

 
Table 6. Input data of the two components in the series system. 

 

Degradation rates  
(0.016, 0.017, 0.018, 0.019) 

(0.016, 0.017, 0.018, 0.019) 

Failure rates  
(0.031, 0.033, 0.036, 0.039) 

(0.031, 0.033, 0.036, 0.039) 

Minimal repair rates and costs 
(0.2, 4000), (0.2, 5000), (0.2, 5500), (0.2, 6000) 

(0.2, 4000), (0.2, 5000), (0.2, 5500), (0.2, 6000) 

Catastrophic failures − 

State attributes 

Production rates 
(1500, 1450, 1400, 1350) 

(1200, 1180, 1100, 1000) 

Non-conforming products  − 

Side effect costs  
(−, 213, 215, 330) 

(−, 213, 215, 330) 

 

 

Table 7 summarizes the results obtained using our model when the objective is to maximize the 

production rate. Two cases are considered. 

 

Case 1: Each Component is Individually Optimized 

The best PM strategy is (4, 1) for both components. Rounding numbers to their nearest whole 

numbers, the system total cost is 4692 $ per day and the system production rate is 844 parts per 

day. 

 

Case 2: The Optimization Considers the Series System as a Whole 

In this case, the best PM strategy is (4, 1) for Component 2 to ensure a maximum system production 

rate of 844 parts per day. For Component 1, all PM strategies will ensure this maximum system 

production rate imposed by the bottleneck Component 2. Therefore, it is better to select strategy 

(4, 2) as it has the lowest cost. Rounding numbers to their nearest whole numbers, the system total 

cost is 4506 $ per day and the system production rate is 844 parts per day. 
 

We remark that the maximum production rate is reached at a lower cost when the optimization 

considers the side effects costs in the series system as a whole (4506 $ per day instead of 4692 $ 

per day). We also observe that Component 2 is less efficient is subjected to the highest PM level 
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(4, 1), while it is sufficient to undergo PM strategy (4, 2) for Component 1, since Component 2 is 

the bottleneck in this series system. 

 

 
Table 7. Results for components 1 and 2. 

 

Component 1 

PM strategy Operating cost Repair cost PM cost Maintenance cost Total cost Production rate 

(4, 1) 192.84 760.939 1391.835 2152.774 2345.614 1079.016 

(4, 2) 210.036 835.324 1114.603 1949.927 2159.962 1066.415 

(4, 3) 238.267 844.765 1097.473 1942.238 2180.505 974.729 

Component 2 

PM strategy Operating cost Repair cost PM cost Maintenance cost Total cost Production rate 

(4, 1) 192.84 760.939 1391.835 2152.774 2345.614 844.109 

(4, 2) 210.036 835.324 1114.603 1949.927 2159.962 815.001 

(4, 3) 238.267 844.765 1097.473 1942.238 2180.505 722.022 

 

 

5. Conclusions 
This paper develops a continuous-time discrete-state Markov chain model to characterize the 

deterioration stochastic process. It considers a multi-state system with each discrete state 

characterized by a degradation level. The proposed multi-state model takes into account side effect 

costs. Optimization models including different constraints and objective functions are discussed. 

The results have confirmed the importance of considering side effects costs when optimizing the 

choice of maintenance policy. The proposed multi-state characterization has established a building 

model for a single component. After this, the model has been extended to deal with series systems, 

and it was shown that preventive maintenance and side effect costs should not be optimized for 

each component individually, but from the perspective of the series system as a whole. 

 

Future work will consider condition-based preventive maintenance optimization of series-parallel 

multi-component systems. For large systems, heuristic methods would be required to solve the 

resulting combinatorial optimization problem. 
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