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Abstract 
Sea level prediction is an important phenomenon for making reliable oceanographic and ship traffic management 

decisions especially for Bosphorus Strait that has no permanent sea level measurement stations due to high cost. This 

study presents artificial intelligence (AI) techniques, such as Artificial Neural Networks (ANNs) and Support Vector 

Machines (SVM) to predict the seawater level in the Bosphorus Strait. In addition, the Multiple Linear Regression model 

(MLR) is constructed and employed as a benchmark. The dataset employed in developing the models are wind speed, 

atmospheric pressure, water surface salinity, and temperature data, which were measured between September 2004 and 

January 2006. The results reveal that all ANN and SVM models outperform MLR and can predict the water levels quite 

accurately. ANN has a better performance than SVM for predicting sea level in the Bosphorus by coefficient of 

correlation (R) = 0.76 and root mean square error (RMSE) = 0.059. Moreover, the influence of the Danube River discharge 

in the prediction is investigated in the present study. The discharge of the Danube River by the lag time of 70 days yields 

the highest performance on ANN by increasing R to 0.82 and decreasing RMSE to 0.048. 

 

Keywords- Seawater level prediction, Artificial intelligence, ANN, SVM, Bosphorus strait, Danube River. 

 

 

 

1. Introduction 
Bosphorus is a natural strait, located in northwestern Turkey, which connects the Black Sea and 

Mediterranean Sea (Figure 1). It is the only way for Bulgaria, Georgia, Romania, Russia (South-

Western part) and Ukraine to reach the world’s oceans (through Mediterranean). It has played a 

significant role in world maritime trade. It is one of the busiest shipping lanes in the world and 

around 48000 ships pass through that strait annually, which is reportedly three and four times 

denser than the traffic of Suez Canal and the Panama Canal (Ergocun, 2019; Sacu et al., 2020a; 

Sacu et al., 2020b; Sacu et al., 2021; Smith, 2015). 

 

Bosphorus has a length of 31 kilometers and a width that varies between 730-3300 meters. The 

water depth varies between 30 and 100 m. Its complicated geometry makes the Bosphorus Strait as 

one of the world’s most difficult waterways to navigate. The strait is only half a mile wide at the 

narrowest cross section, posing an obstacle to the oil tankers and other vessels using the strait. In 

addition, the extremely fast current in the strait, which is controlled by the water level differences 

at both end of the strait, makes it even more difficult to navigate. Current velocity reaches maximum 
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Figure 1. The aerial view of the Bosphorus Strait and the locations of the measurement stations in 

Bosphorus Strait. 
 

 

up to 2 m/s in the narrowest section of the Bosphorus (Ozsoy et al., 1998). Sea level prediction is 

important to make ship traffic management strategies in the Bosphorus Strait, which might cause 

extreme resistance to a hull when moving against the water, especially for those ships moving to 

Black Sea. In addition, sea level prediction has significant influence on the planning and application 

of sea projects that are connected to transportation (Whittington, 2016), coastal management 

(Pethick, 2001), environmental pollution (Maderich and Konstantinov, 2002). However, sea level 

prediction is still inadequate because of the limited observed data (Altunkaynak and Kartal, 2021; 

Anderson, 2013; Hil, 2020). 
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In recent years, many techniques have been employed to predict water level on water bodies. Those 

techniques mainly employ data-driven approaches, which are suited to resolve complex problems. 

In those approaches, the statistical distribution of the data need not to be known and non-

stationarities in the data, such as trends and seasonal variations, are implicitly included in the 

architecture of the model constructed (Kisi and Cigizoglu, 2007). 

 

Altunkaynak et al. (2003) are amongst the first who applied the triple diagram method (TDM) to 

forecast monthly water level fluctuations of Lake Van in Turkey. Later, Altunkaynak and Sen 

(2007) used the fuzzy logic model to predict the water level of Lake Van. Makarynska and 

Makarynskyy (2008) predicted seawater level changes from one hour to five days by using artificial 

neural network (ANN) models by using hourly observed data from a tide gauge in Cocos Island, 

India. Sertel et al. (2008) predicted the daily mean sea level height on the basis of the observed data 

from January 1991 to December 2005 by using ANN. Karimi et al. (2013) predicted sea level 

changes dependent upon the hourly sea level changes in Darwin Harbour, Australia, by applying 

ANN. Altunkaynak (2014) predicted water level fluctuations in Lake Michigan – Huron by using 

wavelet-expert system methods. Altunkaynak and Kartal (2019) predicted the daily Bosphorus 

seawater level by combining wavelet transform to the fuzzy logic model. They achieved to predict 

sea level accurately with extended lead times up to 7 days. Altunkaynak (2019) applied the hybrid 

season-neuro approach to forecast the water level of Lake Van. Khaledian et al. (2020) applied 

support vector machine (SVM) and ANN to predict the Caspian Sea water level. Finally, 

Altunkaynak and Kartal (2021) predicted future sea level lead time up to 7 days of Bosphorus Strait 

by machine learning models. 

 

The sea level variations in the Bosphorus Strait are highly dependent on hydrological, 

meteorological, and oceanographical conditions such as precipitation, evaporation, temperature, 

water salinity (Jarosz et al., 2011; Karsavran et al., 2020; Sacu et al., 2020a; Sacu et al., 2020b; 

Sacu et al., 2021; Yuksel et al., 2008). In this study, ANN and SVM models are constructed and 

compared to predict northern seawater level in the chaotic Bosphorus Strait using meteorological 

and oceanographical measured data. In addition, MLR models are constructed and employed as a 

benchmark. The constructed models are compared with each other and best model architecture is 

selected. Later, the influence of Danube River discharge, about 500 km away, is investigated on 

the seawater level in Bosphorus by using different lag times. 

 

2. Methodology 

2.1 Artificial Neural Networks 
ANN is a group of small individually related processing units that pass the information into along 

interconnections. An ANN is inspired by the biological neural network functions like the human 

brain and the human nervous system. The multilayer perceptron (MLP) technique in ANN (Figure 

2), which has been used for predictions in many areas of engineering and science since the 1990s 

(Chau and Cheng, 2002), consists of at least three layers of interconnected neurons. The first layer 

is the input layer, which accepts external data, and the last layer is the output layer that produces 

the results of the MLP model. The layer between the input and output layers is called the hidden 

layer, where artificial neurons acquire weighted inputs and add a bias value. 
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Figure 2. Multilayer perceptron (MLP) technique in ANN. 

 

 

For an ANN to create an output vector zk as near as possible to the target vector tk, the back-

propagation algorithm is applied to decide the values of weights and biases to minimize a 

predetermined error function (E) (ASCE Task Committee, 2000), which is defined as: 

𝐸 = ∑ ∑ (𝑧𝑘 − 𝑡𝑘)2
𝑝𝑃                                                                                                                      (1) 

 

where P: number of training patterns; p: number of output neurons. 

 

The back-propagation algorithm acts two phases of data flow. First of all, the inputs proceed into 

the network from the input layer to the output layer. Finally, the network creates an output vector, 

which is compared with the desired target vector, and an error is calculated by using Equation (1). 

At that point, the error signals are back-propagated from the output layer to the previous layers to 

update their weights based on Equation (2): 

∆𝑤𝑖𝑗(𝑛) = 𝛼′∆𝑤𝑖𝑗(𝑛 − 1) − 𝜀 (
𝜕𝐸

𝜕𝑤𝑖𝑗
)                                                                                           (2) 

 

where ∆𝑤𝑖𝑗(𝑛) and ∆𝑤𝑖𝑗(𝑛 − 1) are the weight increments between the input and hidden layers 

during the nth and (n-1)th steps, 𝛼′ is the momentum factor that speeds up training and helps 

prevent oscillations, and ε is the learning rate that increases the chance of avoiding the training 

process being trapped in a local minimum instead of global minima (ASCE Task Committee, 2000). 

The training process is propagated until the predicted outputs and target answers equal within a 

given tolerance (Lin and Lee, 1996). 
 

2.2 Support Vector Machines 
SVM states of neural network technology based on statistical learning techniques (Vapnik, 1995; 

1998). The main idea of SVM is to use a linear model to put nonlinear class boundaries into some 

nonlinear mapping of the input vector into the high-dimensional feature space. The linear model 

built in the new space can depict a nonlinear solution boundary in the original space (Wang et al., 

2009). 
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Given the training data set {(𝑥𝑖, 𝑑𝑖)}𝑖
𝑛 , where xi = input vector, di = desired value, n = total number 

of data samples, i = 1,2,…,n. The regression function of SVM is presented in Equation (3) (Wang 

et al., 2009). 

𝑓(𝑥) = 𝑤𝑖. 𝜑(𝑥) + 𝑏                                                                                                                      (3) 

 

where wi = weight, φ(x) = feature of inputs and b = threshold coefficients. The optimal objective 

function is shown in Equation (4). 

𝑚𝑖𝑛𝑅 =
1

2
‖𝑤‖2 + ∑ (𝜉𝑖

𝑡
𝑖=1 + 𝜉𝑖

∗). 𝐶                                                                                              (4) 

 

The constraint conditions are depicted in Equation (5): 

Subject to {

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛

                                                                                       (5) 

 

where 𝜉𝑖 and 𝜉𝑖
∗ are relaxation numbers. If there are some prediction errors, both of them will be 

greater than zero, if not, both of them will be zero. C = parameter to decrease the fitting error, ε = 

allowable error (Lin et al., 2020). 

 

The Lagrangian form is used to solve this optimization problem. The equation is presented in 

Equation (6). 

𝐿 =
1

2
‖𝑤‖2 + ∑ (𝜉𝑛

𝑖=1 + 𝜉𝑖
∗). 𝐶 − ∑ (𝜇𝑖

∗𝑛
𝑖=1 𝜉𝑖

∗ + 𝜇𝑖𝜉𝑖) + ∑ 𝛼𝑖
𝑛
𝑖=1 (𝑓(𝑥𝑖) − 𝑦𝑖 − 𝜀 − 𝜉𝑖) +

+ ∑ 𝛼𝑖
∗𝑛

𝑖=1 (𝑦𝑖 − 𝑓(𝑥𝑖) − 𝜀 − 𝜉𝑖
∗)                                                                                                   (6) 

 

where 𝜇𝑖 , 𝜇𝑖
∗, 𝛼𝑖 , 𝛼𝑖

∗: the lagrangian constants. When taken partial derivation of Equation (6) and 

presented the kernel function 𝐾(𝑥, 𝑥𝑖) = exp (−
‖𝑥−𝑥𝑖‖

2𝜎
) the non-linear fitting function becomes as 

in Equation (7) (Lin et al., 2020). 

𝑓(𝑥) = ∑ (𝛼𝑖
∗𝑛

𝑖=1 − 𝛼𝑖)𝐾(𝑥, 𝑥𝑖) + 𝑏                                                                                               (7) 

 

2.3 Multiple Linear Regression 
Regression is one of the widely employed methods for prediction, optimization, process control, 

and other engineering activities. Mostly, the correlation between independent and dependent 

variables is explained by the regression model. In the simple linear regression, one dependent 

variable is related to one independent variable. However, there is more than one independent 

variable in many empirical models (Montgomery et al., 2009). So, the Multiple Linear Regression 

(MLR) model is used for the models that have more than one independent variable and makes the 

regression model very flexible. The general MLR is represented by Equation (8): 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛                                                                                                  (8) 

 

where Y = dependent variable, Xi = independent variable, βi = regression coefficient. The MLR 

aims to discover an approximation function for the prediction of the system outputs (Kim et al., 

2010). 

 

2.4 Model Evaluation Criteria 

The performances of the proposed models are achieved in terms of two different numerical error 

statistics (Equations 9-10), such as the coefficient of correlation (R) and the root mean square error 
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(RMSE). R describes the degree of collinearity between forecasted and observed data, which ranges 

from -1 to 1. If R = 0, no relationship exists. If R = 1 or -1, a perfect positive or negative linear 

relationship exists. R has been used widely for model evaluation (Erdik et al., 2009; Lin et al., 2006; 

Wang et al., 2009). The root mean square error (RMSE) is often used for measuring the difference 

between forecasted and observed values (Lin et al., 2006; Wang et al., 2009). Those statistics are 

given below: 

𝑅 =
1

𝑛
∑ (𝑊𝐿𝑜(𝑖)−𝑊𝐿0

′ )(𝑊𝐿𝑓(𝑖)−𝑊𝐿𝑓
′ )𝑛

𝑖=1

√
1

𝑛
∑ (𝑊𝐿𝑜(𝑖)−𝑊𝐿0

′ )2𝑛
𝑖=1 .√

1

𝑛
∑ (𝑊𝐿𝑓(𝑖)−𝑊𝐿𝑓

′ )2𝑛
𝑖=1

                                                                                (9) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑊𝐿𝑓(𝑖) − 𝑊𝐿𝑜(𝑖))2𝑛

𝑖=1                                                                                       (10) 

 

where 𝑊𝐿𝑜(𝑖) and (𝑊𝐿𝑓(𝑖) are observed and forecasted surface water level, respectively. 𝑊𝐿0
′  

and 𝑊𝐿𝑓
′  depicts their averages, and n is the number of data. 

 

3. Data and Study Area 
This study is based on continuous measurements carried out by the TAISEI Corporation, Japan, on 

behalf of the Republic of Turkey, Ministry of Environment and Urbanization (RTMEU, 2005). The 

data was measured between September 2004 and January 2006 for 15 months. Water elevation 

measurements at both ends of the Bosphorus (stations D and E) are collected at hourly intervals for 

the same period. Besides water level, water surface salinity and temperature were measured hourly 

in St. E and St. D. The wind speed and atmospheric pressure were measured on weather stations F 

and G at both ends of the Bosphorus Strait. Additionally, Danube River discharge data were 

obtained from the Ceatal Izmail Station for the same period at daily intervals. An aerial view of the 

Bosphorus Strait and the measurement locations are demonstrated in Figure 1. All of the data 

measurements and related information are depicted in Table 1. 

 

 
Table 1. Measurement locations and durations. 

 

 

 

To understand the sensitivity of the independent variables over the dependent variable, the Pareto 

chart is employed. The Pareto chart (Figure 3) depicts the absolute value of the t values of the 

estimated coefficients, which is useful to understand the relative importance of the parameters 

(Erdik and Pektas, 2019; Okcu et al., 2016). A total of 14 parameters are included in the pareto 

chart: those defined in Table 1 (except St. Ceatal Izmail) and the salinity difference (St. D salinity- 

St. E salinity) and temperature differences (St. D temperature- St. E temperature) at both ends of 

Stations Measured Period Measured Characteristics Time Interval Locations 

St. E 
22.09.04- 
05.01.06 

Water level, 

water surface salinity 

and temperature 

Hour 
410 12’ 13’’ N, 
290 05’ 54’’ E 

St. G 
19.11.04- 

05.01.06 

Wind speed, 

air pressure 
10 minutes 

410 24’’ N, 

290 6’ E 

St. D 
25.09.04- 

05.01.06 

Water level, 

water surface salinity 
and temperature 

hour 
410 01’ 31.4’’ N, 

290 00’ 30.3’’ E 

St. F 
18.11.04- 

04.01.06 

Wind speed, 

air pressure 
10 minutes 

410 00’ 32.2’’ N, 

290 00’ 07.02’’ E 

St. Ceatal Izmail 
01.01.04- 
31.12.05 

Discharge daily 
450 21’ 67’’ N, 
280 71’ 67’’ E 
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the Bosphorus. 

 

The most effective parameters on the predicted sea level of the northern end of Bosphorus are found 

to be water temperature difference (WTD) and water salinity difference (WSD) between station D 

and E by 5.15 and 4.61 t-values, respectively. The other influential parameters compared to the 

others are air pressure at station F (APF), air pressure at station G (APG), northern wind gust at 

station G (NWGG) and northern wind gust at station F (NWGF). A total of 11 input sets are 

developed for the ANN, SVM and MLR models in Table 2. In the present study, 70% of total data 

were used for training and the remaining 30% for testing of all models. The division of data was 

done randomly, and the same training and test data were used for each model run. 
 

 

 
 

Figure 3. Pareto chart of the MLR model. 

 

 

Table 2. Input set parameters. 
 

Input Set Name Parameters 

Set 1 WTD, WSD, APF, NWGG, NWGF 

Set 2 WTD, WSD, APF, APG, NWGG 

Set 3 WTD, WSD, NWGG, NWGF 

Set 4 WTD, WSD, NWGF 

Set 5 WTD, WSD, APG, NWGG, NWGF 

Set 6 WTD, WSD, NWGG 

Set 7 WTD, WSD, APF, NWGG 

Set 8 WTD, WSD, APF, APG, NWGG, NWGF 

Set 9 WTD, WSD, APF, APG, NWGF 

Set 10 WTD, WSD, APF 

Set 11 WTD, WSD, APG 
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4. Application and Results 
Various ANN models are developed by using the input sets in Table 2. A total of 12 nodes are 

employed in the hidden layer. The optimum number of nodes were determined using a trial and 

error approach (Kim et al., 2013; Kisi, 2007; Seo et al., 2015). The number of hidden nodes was 

determined by systematically increasing the number of nodes from 1 to 12 until the network 

performance was not improved any more. The optimal structure of ANN was determined for the 

input Set 4 (3-8-1), with correlation coefficient (R) = 0.76 and root mean square error (RMSE) = 

0.0587 (Table 3). Herein, the numbers of net name 3-8-1 depict an ANN model that has 3 input 

(WTD, WSD, NWGF), 8 hidden and 1 output nodes, respectively. In the present study, ANN 

models were trained with the Vanilla-Standard backpropagation. Many activation functions of 

hidden and output neurons from logsig, tansig to purelin are tried. 
 

Table 3. Comparison of ANN input sets performance. 
 

 

The results of sea level prediction with designated input compounds (Table 2) are demonstrated in 

Table 4 by using SVM with the optimal Kernel function. A Kernel function must be chosen from 

the qualified functions (Dibike et al., 2001; Wang et al., 2009). Most of the works on the use of 

SVM on coastal modeling and forecasting have demonstrated the favorable performance of the 

Radial Basis Function (RBF, Lin et al., 2006; Wang et al., 2009). Therefore, the RBF is used as the 

Kernel function for the prediction of surface sea level in the present study. There are three 

parameters of RBF Kernels: C, ε and σ, which affect the accuracy of an SVM model. The SCE UA 

(shuffled complex evolution - University of Arizona) method is employed to optimize the 

parameters of SVM (Duan et al., 1993). An extra presentation of SCE UA can be found by Lin et 

al. (2006). The RMSE is used to reach a suitable choice of these parameters and C, ε, σ are obtained 

as 19.27, 0.1, 0.33 for the Bosphorus. The highest performance of SVM is found with correlation 

coefficient R = 0.72 and RMSE = 0.0608 (Table 4). 

 

The constructed MLR models are given in Table 5. In practical engineering applications, 

“parsimonious” models are preferable (Sen and Erdik, 2010). Therefore, the model obtained with 

four input variables, defined as SET 7 in Table 2, is suggested. The resulting model is: 

𝑊𝐿𝐸 =  1. 2230 +  0.0139𝑊𝑆𝐷 +  0.0199𝑊𝑇𝐷  −  0.0015𝑁𝑊𝐺𝐺 −  0.0009𝐴𝑃𝐹            (11) 

 

where WLE: water level of St. E - Northern Bosphorus. The performance of best model is R = 0.63 

and RMSE = 0.0701. The normality assumption that the underlying residuals (observed minus 

predicted values) are normally distributed is not violated in regression models in Table 5. In 

addition, MLR models are checked for collinearity. The most apparent difference is that the 

Variance Inflation Factors (VIFs) are all less than 5, which is a clear indication that there is no 

multi-collinearity in the dataset. 

Net Name Input Sets RMSE R 

3-8-1 SET4 0.0587 0.76 

5-7-1 SET1 0.0595 0.75 

5-4-1 SET2 0.0613 0.74 

4-9-1 SET3 0.0615 0.74 

5-11-1 SET5 0.0614 0.73 

4-6-1 SET7 0.0616 0.73 

3-8-1 SET6 0.0616 0.73 

5-11-1 SET9 0.0620 0.73 

6-10-1 SET8 0.0620 0.73 

3-10-1 SET10 0.0621 0.73 

3-4-1 SET11 0.0632 0.72 
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Table 4. Comparison of SVM input sets performance. 
 

 
 

 

 
Table 5. Comparison of MLR input sets performance. 

 

 
 

 

Overall, the ANN and SVM models yield similar prediction results and better prediction 

performance than MLR models (Figure 4). ANN seems to best predict the water level of the 

Bosphorus with the highest R = 0.76 and RMSE = 0.0587, while SVM is with the highest R = 0.72 

and RMSE = 0.0608. ANN seems to be the best model to predict the water level of the Bosphorus 

with the highest R = 0.76 and RMSE = 0.0587, while SVM is with the highest R = 0.72 and RMSE 

= 0.0608. However, SVM can be used to forecast the water level of the Bosphorus in some special 

conditions. It can be seen that Set 4 in Table 3 and Set 10 in Table 4 produce the best models for 

ANN and SVM, respectively. Set 4 includes WTD, WSD, NWGF, while Set 10 includes WTD, 

WSD, APF (Table 2). This indicates that ANN is more sensitive to the wind, while SVM is sensitive 

to the air pressure for Bosphorus Strait. Since Bosphorus Strait shows highly oceanographic 

variability due to wind effects, atmospheric pressure differences, tide and freshwater, it is a 

challenging task to improve model prediction capabilities. In the future, the influence of the Danube 

River with different lag times on sea level prediction can be investigated. In addition, more reliable 

and robust predictions can be obtained if the dynamic and long-term measurement stations are 

installed in the Bosphorus. 
 

Models Input Sets RMSE R 

SVM SET 10 0.0608 0.72 

SVM SET 11 0.0610 0.72 

SVM SET 5 0.0616 0.71 

SVM SET 1 0.0616 0.71 

SVM SET6 0.0620 0.70 

SVM SET 7 0.0622 0.70 

SVM SET 3 0.0628 0.70 

SVM SET 4 0.0630 0.69 

SVM SET 2 0.0632 0.69 

SVM SET 8 0.0634 0.69 

SVM SET9 0.0637 0.68 

Models Input Sets RMSE R 

MLR SET 8 0.0701 0.63 

MLR SET 2 0.0701 0.63 

MLR SET 1 0.0701 0.63 

MLR SET 7 0.0701 0.63 

MLR SET9 0.0702 0.63 

MLR SET 5 0.0703 0.63 

MLR   SET 10 0.0704 0.62 

MLR   SET 11 0.0705 0.62 

MLR SET6 0.0706 0.62 

MLR SET 3 0.0706 0.62 

MLR SET 4 0.0707 0.62 
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Figure 4. Scatter plot of seawater level for ANN and SVM in Bosphorus Strait (together with 1:1 perfect 

line). 

 

 

5. Influence of the Danube River on the Northern Bosphorus 
In the present study, the influence of the Danube River on water surface elevation in the Bosphorus 

was also investigated by using ANNs. Although there is about 500 km distance between the Danube 

River and Bosphorus Strait (Figure 1), there are various studies in the literature revealing the 

influence of the Danube River on water levels in the Bosphorus. Sur et al. (1994), revealed the lag 

time from the Danube River to the Bosphorus between 1-2 months. Similar findings are also found 

by Yuksel et al. (2008) and Karsavran et al. (2020). In the present study, based on the findings of 

(Karsavran et al., 2020), 70 days lagged Danube River discharge is added to the best ANN model 

defined with the input structure given in Table 4. Various hidden layer structures are employed. 

Finally, network structure 4-9-1 (4 input- 9 hidden neuron- 1 output) resulted in the best ANN 

model. The R value increased to 0.82 from 0.76, and the RMSE value decreased to 0.0488 from 

0.0587. 

 

6. Conclusions 
In the present study, ANN and SVM techniques are applied to predict the daily water levels of the 

Bosphorus to obtain higher correlation coefficient R. Results indicate that ANN has the best 

performance to predict the seawater level by R = 0.76 and RMSE = 0.0587 in Bosphorus Strait, 

although SVM approaches the prediction performance of it. However, according to the input sets 

that provide the best results for ANN and SVM, it is observed that ANN is more sensitive to the 

wind, while SVM is sensitive to the air pressure. 

 

When the Danube River discharge data are inserted to the best resulted ANN model as an 

independent input parameter, the correlation coefficient dramatically increases from R = 0.76 to R 

= 0.82 and RMSE = 0.0488. This reveals the effect of the Danube River run-off discharges to the 

sea level of Bosphorus Strait. However, it is not possible to get a higher correlation coefficient (R) 

for the prediction of seawater level of Bosphorus with the observed data due to the chaotic structure 

of Bosphorus Strait. 

Observed sea water level (m) 

 

 

P
re

d
ic

te
d

 s
ea

 w
at

er
 l

ev
el

 (
m

) 

 



Karsavran & Erdik: Artificial Intelligence Based Prediction of Seawater Level: A Case Study…  
 

 

1252 | Vol. 6, No. 5, 2021 

Conflict of Interest 

The authors confirm that there is no conflict of interest to declare for this publication. 

 

Acknowledgments 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. 

The authors would like to thank the editor and anonymous reviewers for their comments that help improve the quality of 

this work. 

 

 

 

References 

Altunkaynak, A. (2014). Predicting water level fluctuations in lake michigan-huron using wavelet-expert 

system methods. Water Resources Management, 28(8), 2293-2314. 

Altunkaynak, A. (2019). Predicting water level fluctuations in Lake Van using hybrid season-neuro approach. 

Journal of Hydrologic Engineering, 24(8), 04019021. 

Altunkaynak, A., & Kartal, E. (2019). Performance comparison of continuous wavelet-fuzzy and discrete 

wavelet-fuzzy models for water level predictions at northern and southern boundary of Bosphorus. 

Ocean Engineering, 186, 106097. https://doi.org/10.1016/j.oceaneng.2019.06.002. 

Altunkaynak, A., & Kartal, E. (2021). Transfer sea level learning in the Bosphorus strait by wavelet based 

machine learning methods. Ocean Engineering, 233, 109116. 

https://doi.org/10.1016/j.oceaneng.2021.109116. 

Altunkaynak, A., & Sen, Z. (2007). Fuzzy logic model of Lake water level fluctuations in Lake Van, Turkey. 

Theoretical and Applied Climatology, 90(3), 227-233. https://doi.org/10.1007/s00704-006-0267-z. 

Altunkaynak, A., Ozger, M., & Sen, Z. (2003). Triple diagram model of level fluctuations in lake van, 

Turkey. Hydrology and Earth System Sciences, 7(2), 235-244. https://doi.org/10.5194/hess-7-235-2003, 

2003. 

Anderson, S.J. (2013). Optimizing HF radar siting for surveillance and remote sensing in the Strait of 

Malacca. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1805-1816. 

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural 

networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. 

Chau, K.W., & Cheng, C.T. (2002, December). Real-time prediction of water stage with artificial neural 

network approach. In Australian Joint Conference on Artificial Intelligence, (pp. 715-715). Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/3-540-36187-1_64. 

Dibike, Y.B., Velickov, S., Solomatine, D., & Abbott, M.B. (2001). Model induction with support vector 

machines: introduction and applications. Journal of Computing in Civil Engineering, 15(3), 208-216. 

Duan, Q.Y., Gupta, V.K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and 

efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. 

Erdik, T., & Pektas, A.O. (2019). Rock slope damage level prediction by using multivariate adaptive 

regression splines (MARS). Neural Computing and Applications, 31(7), 2269-2278. 

Erdik, T., Savci, M.E., & Sen, Z. (2009). Artificial neural networks for predicting maximum wave runup on 

rubble mound structures. Expert Systems with Applications, 36(3, part 2), 6403-6408. 

Ergocun, G. (2019). Over 41,000 vessels pass through Bosphorus in 2019, Anadolu Agency, 

https://www.aa.com.tr/en/economy/over-41-000-vessels-pass-through-bosphorus-in-2019/1722573. 

Hil, G. (2020). Better management through measurement: integrating archaeological site features into a GIS-

based erosion and sea level rise impact assessment—blueskin bay, New Zealand. The Journal of Island 

and Coastal Archaeology, 15(1), 104-126. https://doi.org/10.1080/15564894.2018.1531331. 

https://doi.org/10.1016/j.oceaneng.2019.06.002
https://doi.org/10.1016/j.oceaneng.2021.109116
https://www.aa.com.tr/en/economy/over-41-000-vessels-pass-through-bosphorus-in-2019/1722573
https://doi.org/10.1080/15564894.2018.1531331


Karsavran & Erdik: Artificial Intelligence Based Prediction of Seawater Level: A Case Study…  
 

 

1253 | Vol. 6, No. 5, 2021 

Jarosz, E., Teague, W.J., Book, J.W., & Beşiktepe, S. (2011). Observed volume fluxes in the Bosphorus 

strait. Geophysical Research Letters, 38(21), 1-6. https://doi.org/10.1029/2011GL049557. 

Karimi, S., Kisi, O., Shiri, J., & Makarynskyy, O. (2013). Neuro-fuzzy and neural network techniques for 

forecasting sea level in darwin harbor, Australia. Computers & Geosciences, 52, 50-59. 

Karsavran, Y., Erdik, T., & Terzioglu, Z.O. (2020). The effect of the peak discharges of river danube on 

Istanbul strait (Bosphorus). International Journal of Environment and Geoinformatics, 7(2), 108-113. 

Khaledian, M.R., Isazadeh, M., Biazar, S.M., & Pham, Q.B. (2020). Simulating caspian sea surface water 

level by artificial neural network and support vector machine models. Acta Geophysica, 68(3-4), 553-

563. https://doi.org/10.1007/s11600-020-00419-y. 

Kim, M.H., Kim, Y.S., Lim, J., Kim, J.T., Sung, S.W., & Yoo, C. (2010). Data-driven prediction model of 

indoor air quality in an underground space. Korean Journal of Chemical Engineering, 27(6), 1675-1680. 

Kim, S., Shiri, J., Kisi, O., & Singh, V.P. (2013). Estimating daily pan evaporation using different data-driven 

methods and lag-time patterns. Water Resources Management, 27(7), 2267-2286. 

Kisi, O. (2007). Streamflow forecasting using different artificial neural network algorithms. Journal of 

Hydrologic Engineering, 12(5), 532-539. 

Kisi, O., & Cigizoglu, H.K. (2007). Comparison of different ANN techniques in river flow prediction. Civil 

Engineering and Environmental Systems, 24(3), 211-231. https://doi.org/10.1080/10286600600888565. 

Lin, C.T., & Lee, C.G. (1996). Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice 

hall. 

Lin, G.Q., Li, L.L., Tseng, M.L., Liu, H.M., Yuan, D.D., & Tan, R.R. (2020). An improved moth-flame 

optimization algorithm for support vector machine prediction of photovoltaic power generation. Journal 

of Cleaner Production, 253, 119966. https://doi.org/10.1016/j.jclepro.2020.119966. 

Lin, J.Y., Cheng, C.T., & Chau, K.W. (2006). Using support vector machines for long-term discharge 

prediction. Hydrological Sciences Journal, 51(4), 599-612. https://doi.org/10.1623/hysj.51.4.599. 

Maderich, V., & Konstantinov, S. (2002). Seasonal dynamics of the system sea-strait: Black Sea–Bosphorus 

case study. Estuarine, Coastal and Shelf Science, 55(2), 183-196. 

Makarynska, D., & Makarynskyy, O. (2008). Predicting sea-level variations at the cocos (keeling) islands 

with artificial neural networks. Computers & Geosciences, 34(12), 1910-1917. 

Montgomery, D.C., Runger, G.C., & Hubele, N.F. (2009). Engineering statistics. John Wiley & Sons. 

Okcu, D., Pektas, A.O., & Uyumaz, A. (2016). Creating a non-linear total sediment load formula using 

polynomial best subset regression model. Journal of Hydrology, 539, 662-673. 

Ozsoy, E., Latif, M.A., Besiktepe, S.T., Cetin, N., Gregg, M.C., Belokopytov, V., Goryachkin, Y., & 

Diaconu, V. (1998). The Bosphorus Strait: Exchange fluxes, currents, and sea-level changes, in 

Ecosystem Modeling as a Management Tool for the Black Sea, edited by L. Ivanov, and T. Oğuz, NATO 

Sci. Ser., 2, 1- 27, Kluwer Acad., Dordrecht, Netherlands. 

Pethick, J. (2001). Coastal management and sea-level rise. Catena, 42(2-4), 307-322. 

https://doi.org/10.1016/S0341-8162(00)00143-0. 

RTMEU, (2005). Long-term continuous current velocity measurements. Republic of Turkey Ministry of 

Environment and, Urbanization. 

Sacu, S., Erdik, T., & Sen, O. (2020b). Salinity distribution at canal Istanbul and its possible impacts on the 

northern marmara sea. China Ocean Engineering, 34(6), 881-888. https://doi.org/10.1007/s13344-020-

0080-y. 

 

https://doi.org/10.1029/2011GL049557
http://dx.doi.org/10.1007/s11600-020-00419-y
https://doi.org/10.1080/10286600600888565
https://doi.org/10.1016/j.jclepro.2020.119966
https://doi.org/10.1623/hysj.51.4.599
http://dx.doi.org/10.1016/S0341-8162(00)00143-0
http://dx.doi.org/10.1007/s13344-020-0080-y
http://dx.doi.org/10.1007/s13344-020-0080-y


Karsavran & Erdik: Artificial Intelligence Based Prediction of Seawater Level: A Case Study…  
 

 

1254 | Vol. 6, No. 5, 2021 

Sacu, S., Erdik, T., Stanev, E.V., Sen, O., Erdik, J.D., & Öztürk, İ. (2020a). Hydrodynamics of canal Istanbul 

and its impact in the northern sea of Marmara under extreme conditions. Ocean Dynamics, 70(6), 745-

758. https://doi.org/10.1007/s10236-020-01358-4. 

Sacu, S., Sen, O., & Erdik, T. (2021). A stochastic assessment for oil contamination probability: a case study 

of the Bosphorus. Ocean Engineering, 231, 109064. https://doi.org/10.1016/j.oceaneng.2021.109064. 

Sen, Z., & Erdik, T. (2010). Discussion of “improvement of regression simulation in fluvial sediment loads” 

by P. Wang and L.C Linker. Journal of Hydraulic Engineering, 136(3), 191-192. 

Seo, Y., Kim, S., Kisi, O., & Singh, V.P. (2015). Daily water level forecasting using wavelet decomposition 

and artificial intelligence techniques. Journal of Hydrology, 520, 224-243. 

Sertel, E., Cigizoglu, H.K., & Sanli, D.U. (2008). Estimating daily mean sea level heights using artificial 

neural networks. Journal of Coastal Research, 24(3 (243)), 727-734. 

Smith, R.B. (2015). Dynamical meteorology| hydraulic flow. In book: Encyclopedia of Atmospheric 

Sciences. 332-333. https://doi.org/10.1016/B978-0-12-382225-3.00165-1. 

Sur, H.I., Ozsoy, E., & Unluata, U. (1994). Boundary current instabilities, upwelling, shelf mixing and 

eutrophication processes in the Black Sea. Progress in Oceanography, 33(4), 249-302. 

Vapnik, V.N. (1995). The nature of statistical learning theory. Springer, New York. 

https://doi.org/10.1007/978-1-4757-2440-0. 

Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York. 

Wang, W.C., Chau, K.W., Cheng, C.T., & Qiu, L. (2009). A comparison of performance of several artificial 

intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374(3-4), 

294-306. https://doi.org/10.1016/j.jhydrol.2009.06.019. 

Whittington, M. (2016). Identifying and assessing emerging risks in marine transportation. 

Yuksel, Y., Ayat, B., Ozturk, M.N., Aydogan, B., Guler, I., Cevik, E.O., & Yalçıner, A.C. (2008). Responses 

of the stratified flows to their driving conditions—a field study. Ocean Engineering, 35(13), 1304-1321. 

 

 

 

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses 

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/ 

https://doi.org/10.1016/j.oceaneng.2021.109064
http://dx.doi.org/10.1016/B978-0-12-382225-3.00165-1
https://doi.org/10.1016/j.jhydrol.2009.06.019

