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Abstract 

This paper investigates the problem of route planning for rechargeable unmanned aerial vehicles (UAV) under the 

mission time constraint in cases where more than one trip per round is required due to limited battery capacities. The 

goal is to determine the number of UAVs to be deployed and the flying paths that minimize the total mission cost. 

Unlike previous works, the electric cost incurred by UAV recharging proportional to actual flying distances is 

incorporated into our model. The problem is formulated as a mixed-integer programming model to minimize the sum of 

electric charging cost, the UAV usage cost, and the penalty cost from the violation of the mission time constraint. 

Extensive numerical experiments are conducted to examine the integrity and performance of the proposed model under 

various model parameters and deployment scenarios in grid areas and a real terrain area. The optimal solutions can be 

obtained for small-scale problem instances in a reasonable runtime. For large-scale problems, only feasible solutions 

can be obtained due to limited computational resources. 

 

Keywords- Unmanned aerial vehicle (UAV), Route planning, Rechargeable unmanned aerial vehicles, Mission time 

constraint, Mixed-integer programming (MIP). 

 

 

 

1. Introduction 

Due to the rapid development of transportation technology over the past few years, unmanned 

aerial vehicles (UAVs) have proven beneficial in terms of cost and time efficiency, especially in 

areas inaccessible to humans (Joshi, 2019). From deliveries at the rush hour, express shipping, 

delivering life-sustaining bags in flood areas, storm tracking, hurricane forecasting, or unmanned 

cargo transport, UAV use improves efficiency and raises productivity while reducing the 

investment cost, workload, and operating time. Due to limited fleet size and limited battery 

capacity, UAVs may have to operate multiple trips and require recharging in between to complete 

the mission in a large service area. Non-optimal planning of the flying paths can result in an 

unnecessarily high cost from UAV charging and usages and excessive time in completing 

missions. Thus, the model of route planning for rechargeable UAVs is crucial to obtain the 

optimal solution with minimum total mission cost. 

 

In practice, UAV recharging incurs an electricity cost that depends on the remaining UAV energy 

before recharging when returning to the base, and the recharging time adds to the total mission 

time. For the same coverage area, deploying more UAVs will shorten the mission time and results 

in less charging time at the expense of a higher UAV usage cost. A time constraint is specified for 
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time-critical missions, and the amount of completion time exceeding the time constraint is 

penalized. Trade-offs among UAV recharging during trips, the number of UAVs deployed, and 

the mission time regarding the total mission cost in the UAV route planning problem have not 

been considered in prior works. Our objective is to determine the UAV flying paths that minimize 

the total mission cost from these three cost components. 

 

The major contributions of this research are two fold: 

 

 First, we formulate and solve the mathematical model for the route planning of multiple 

rechargeable UAVs with multiple trips and rounds under the mission time constraint that 

minimizes the total operating cost. Unlike models in previous works, we incorporate the 

recharging period based on the actual remaining UAV energy. The proposed model 

determines the number of UAVs to be deployed and their flying paths that minimize the 

sum of three cost components: recharging cost, UAV usage, and penalty of mission time 

violation. 

 Second, the effects of the problem size and model parameters are explored for the 

model’s computational limitations. A sensitivity analysis of parameters was also 

conducted. A real terrain is also used as the problem input to demonstrate practical usage 

of the model. 

 

The remainder of this paper is organized as follows. Section 2 reviews related works on UAV 

route planning. In Section 3, the problem description, assumptions, notations, and mathematical 

models are presented. Section 4 discusses the computational results from our model and the 

sensitivity to the model parameters. Finally, in Section 5, we summarize our conclusion and 

provide directions for future research. 

 

2. Related Works 

In cargo transportation research, a basic yet essential problem is to seek an optimal path for a fleet 

of vehicles, known as the vehicle routing problem (VRP). Given a set of known locations, a fleet 

of vehicles starts from a depot and visits all locations, then returns to the depot or the base under a 

set of truck capacity and delivery time window constraints (Dantzig and Ramser, 1959). The time 

window constraint is crucial in the mission of last-mile delivery. In the VRP with time windows 

(VRPTW), the time window constraint can be violated if the penalty is paid and hence is 

considered as a soft time window. Troudi et al. (2018) presented an analytical model of a UAV 

delivery mission that considers the autonomy and energy consumption based on the UAV 

specification. Their objectives were to minimize the total distance, the total number of UAVs 

used, and the total battery used during the mission. Kitjacharoenchai and Lee (2019) and Han et 

al. (2020) considered the last-mile delivery that uses a truck to store goods and uses UAVs to 

deliver goods to customers. Kitjacharoenchai and Lee’s work focused on minimizing the total 

arrival time of a truck and UAVs after completing the mission, while Han’s work implemented 

the artificial bee colony to minimize the total energy consumption of a truck and UAVs. The 

minimization of the total number of UAVs was also considered in their work. The works 

mentioned above considered only a single trip, and hence their models do not take the battery or 

fuel capacity constraints into account. 

 

The multiple-trip vehicle routing problem (MTVRP) is an extension of classical VRP, where each 

vehicle is allowed to perform multiple trips if it cannot visit all points of interest within one trip 
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(Zmazek et al., 2005). Heuristics such as tabu search by Alonso et al. (2008) and genetic 

algorithm by Ayadi and Benadada (2013) have been implemented to solve the basic MTVRP. 

Kabcome and Mouktonglang (2015) proposed the mathematical model to solve VRP with a soft 

time window, multiple product categories, including multiple compartments and trips. Zhen et al. 

(2020) defined the multi-depot multi-trip VRP with time window and release date for the last-

mile distribution scenarios. They implemented the CPLEX solver for small-scale instances and 

developed a hybrid particle swarm optimization algorithm and hybrid genetic algorithm to solve 

large-scale instances. However, these works did not consider the energy constraint of vehicles 

and the cost of deploying vehicles. 

 

For the recharging vehicle routing problem (RVRP), (electric) vehicles with limited range or 

energy travel over a predefined set of points of interest and can recharge at destinations to 

continue a tour, or vehicles can be recharged at the depot only (Conrad and Figliozzi, 2011). 

Penna et al. (2016) proposed a hybrid iterative local search algorithm for the VRP with time 

window and recharging stations, where the objective is to determine the composition of the fleet 

that minimizes the fixed and travel cost. Hiermann et al. (2016) implemented a hybrid heuristic 

that combines adaptive large neighborhood search with an embedded local search and labeling 

procedure to solve the problem. To recharge energy-limited UAVs to visit a set of sites, Yu et al. 

(2019) presented the algorithm that finds the order of site visits and where to land to recharge 

either on a stationary recharging station or unmanned ground vehicles (UGVs) in the least amount 

of time. A time-dependent fleet of heterogeneous UAVs routing problem which considers 

multiple charging stations and operational requirements was considered in Coelho et al. (2017). 

However, these works only considered a single trip and did not include the cost of deploying 

UAVs in their models. So, to visit all locations, the combination of multiple trips with battery 

recharging must be integrated into our proposed model. 

 

Unlike terrestrial vehicles such as trucks, trains, or public transportation, UAVs have a small 

battery capacity, limiting their flight duration and distance. For a large deployment area, one must 

strike a balance between the cost of deploying many UAVs and the cost of recharging. Dorling et 

al. (2017) presented multi-trip VRP for UAV delivery that considered the effect of payload 

weight on the energy consumption subject to delivery time or budget constraints. However, 

battery swapping on UAVs was used instead of recharging and the UAV usage cost was not 

considered. The work by Choi et al. (2019) studied a multi-trip VRP for small UAV-based urban 

delivery. The model minimized the sum of acquisition cost and the operating cost of the mission 

and considered the package reloading time at the depot. 

 

From the works discussed earlier, the research gap is the lack of UAV route planning that 

considers the battery consumption and recharging during the trips, as well as the cost of 

deploying UAVs in the model. The battery recharging time based on the remaining energy or the 

flying distance of UAVs has not previously been considered, and no research exists that 

integrates the battery recharging time, the UAV usage cost, and the penalty of mission time 

violation in UAV route planning. Our objective is to determine the optimal UAV flying paths and 

number of UAVs to be deployed under multiple trips and rounds that minimizes the total mission 

cost. Unlike the previous works that have been discussed, we consider the cost of UAV 

recharging that depends on the flying distance, the UAV usage cost and the penalty of mission 

time violation in UAV route planning. 
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3. Proposed Model 

This section formally defines the problem of route planning for UAVs with multiple rounds and 

trips, mission time constraint, and battery recharging. Then, the mixed-integer programming 

(MIP) model for the problem is developed. 

 

3.1 Problem Description and Assumptions 

Consider a set of locations or coordinates to be visited by UAVs, as in survival bag delivery 

under flood situations in an unreachable area for the rescue team. Many delivery rounds may be 

required for the whole mission, where all the locations have been visited once in a single round. 

The whole mission deploys the number of UAVs that will be released from the same base 

location, and all the UAVs return to the base location when they finish. Since each UAV has a 

limited battery capacity, it may repeatedly fly back to the base location for battery recharging as 

needed and resume its operations to finish all its assigned locations. The decision for recharging 

is made based on the percentage of UAV remaining battery capacity as we certainly cannot let a 

UAV run out of battery airborne. We call it a trip when a UAV departs and returns to the base 

location, and the sequence of locations to be visited by a UAV for the whole mission as a route. 

So, the route of a UAV can consist of multiple trips with recharging periods in between as shown 

in Figure 1. 
 

 
 

Figure 1. An example of timing diagrams of two rechargeable UAVs. 

 

 

The total cost incurred by the mission is the sum of UAV electric or recharging usage cost, UAV 

usage cost, and time penalty cost when the time taken to complete the whole mission exceeds a 

pre-specified time constraint. Our goal is to determine routes of the UAVs to minimize the total 

cost under the mission time constraints. The time penalty cost unit can be applied to weigh the 

impact of a time constraint violation, which is application specific. The following assumptions 

are made in our problem: 

 

 All the UAVs are homogeneous so that they have the same energy consumption rate, 

flying speed, and battery capacity. 

 The UAV energy consumption linearly increases with the flying distance. 

 Each UAV trip starts and ends at the base location. 

 Each location, except the base location, must be visited at least once in each round. 
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 At the end of each round, each UAV recharges its battery before performing another 

round. 

 The batteries of all UAVs must be at the full level at the beginning and end of the mission. 

 

3.2 Model Formulation 

3.2.1 Notations 

We formulate the UAV route planning problem as an MIP model. The set of locations is defined 

as a directed graph 𝐺 = (𝕍, 𝔼), where 𝕍 is a set of vertices or locations {1,2, … , 𝑁} with known 

coordinates and location 0 denotes the base location, and 𝔼 = {(𝑖, 𝑗)|𝑖, 𝑗 𝜖 𝕍} is a set of edges 

among neighboring vertices. The neighboring locations of 𝑖 ∈ 𝕍 are the smallest set of locations 

forming a convex hull with 𝑖 inside. The Euclidean distance between two locations 𝑖 and 𝑗 is 

denoted by 𝑑𝑖𝑗. Denote the number of UAVs as 𝑁𝑈 =  |𝕌|. Each UAV 𝑢 has a battery capacity of 

𝑄. A trip 𝑡 is defined by a sequence of visits to locations and a set of trips by 𝕋 with a maximum 

allowed trip of 𝑇𝑚𝑎𝑥 as 𝕋 = {1,2, … , 𝑇𝑚𝑎𝑥}. The set of rounds is represented by ℝ =
{1,2, … , 𝑁𝑅}. We assume that all the UAVs fly at the constant velocity 𝑉 and the flying time from 

location 𝑖 to 𝑗 is 𝑡𝑖𝑗 =  𝑑𝑖𝑗/𝑉. A penalty cost is incurred when there exists a UAV that finishes its 

route after the mission time deadline or target mission time 𝑇𝑐, which can be chosen based on the 

area size, the mission purpose, and UAV capabilities. Tables 1-3 show the parameters and 

variables used in the formulation. 

 

 
Table 1. Sets and parameters. 

 

Sets/Parameters Description 

𝕍 Set of locations {0,1,2, … , 𝑁} 

𝔼 Set of edges {(𝑖, 𝑗|𝑖, 𝑗 ∈ 𝕍)} ∶ 𝑖 ≠ 𝑗 

𝕌 Set of UAVs {1,2, … , 𝑁𝑈} 

𝕋 Set of trips {1,2, … , 𝑇𝑚𝑎𝑥} 

𝑇𝑚𝑎𝑥 Number of maximum allowed trips for each UAV 

ℝ Set of rounds {1,2, … , 𝑁𝑅} 

𝑄 The battery capacity of each UAV (watt-hours) 

𝑉 UAV velocity (meter/second) 

𝑇𝑐 Target mission time (second) 

𝑀 Sufficiently large enough number 

𝜃 The limit percentage of battery capacity of each UAV in each trip 

𝛼 Time penalty unit cost (baht/second) 

𝛽 UAV unit cost (baht/UAV) 

𝛾 Energy unit cost (baht/mWh) 

𝑑𝑖𝑗 Distance between location 𝑖 and 𝑗 (meter) 

𝐸𝑖𝑗 Energy consumed between location 𝑖 and 𝑗 (watt-hours) 

𝐶𝑅 The energy consumption rate of each UAV per meter (watt-hour/meter) 

𝑅𝑅 Recharging rate of each UAV per second (seconds/watt-hours) 
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Table 2. Computation variables. 

 

Computation Variables Description 

𝑅𝑒𝑚𝑎𝑖𝑛𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑡𝑢 The remaining energy of each UAV at the base location in trip 𝑡 of round 𝑟 

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝑟𝑡𝑢 The time consumption of each UAV in trip 𝑡 of round 𝑟 including recharging time 

𝑅𝑒𝑚𝑎𝑖𝑛𝑜𝑓𝑈𝐴𝑉𝑟𝑢 The remaining battery capacity at last trip in each round of UAV 𝑢 

𝑀𝑎𝑥𝑇𝑖𝑚𝑒𝑢 The penalty of overtime of each UAV 

 

 

Table 3. Decision variables. 
 

Decision Variables Description 

𝑥𝑖𝑗
𝑟𝑡𝑢 Binary equals one if UAV 𝑢 travels from 𝑖 to 𝑗 in trip 𝑡 of round 𝑟 

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑡𝑢 Binary equals one if UAV 𝑢 consumes energy more than (𝑄 ∙ 𝜃) in trip 𝑡 of round 𝑟 

𝑈𝐴𝑉𝑈𝑠𝑒𝑑𝑢 Binary equals one if UAV 𝑢 is deployed in the mission 

𝜇𝑖
𝑟𝑡𝑢 The order of location already visited by UAV 𝑢 before entering 𝑖 in trip 𝑡 of round 𝑟 

 

 

3.2.2 Mathematical Model 

The problem is a minimization problem with the objective function (1) consisting of three parts. 

The first part is the (electric) recharging cost, which is proportional to the sum of all UAV travel 

distances. The second part is the cost of using UAVs. The last part is the penalty for the excess 

time that UAVs use beyond the mission time constraint. For the objective function to have a 

meaningful interpretation, appropriate values of the scaling factors 𝛾, 𝛽, and 𝛼 in the recharging 

cost, the UAV usage cost, and time penalty cost are used respectively so that the objective 

function has the monetary cost unit. So, we treat 𝛾 as the energy unit cost we pay for every unit of 

electricity used during UAV recharging, 𝛽 as the UAV unit cost we pay for each UAV deployed 

in the mission, and 𝛼 as the time penalty unit cost we pay for each second the target mission time 

has been exceeded. The value of 𝛼 is set to reflect the degree of the time sensitivity of the 

mission, e.g., the one used in the mission of distributing fertilizer on a large farm should be lower 

than those in distributing survival bags for flood victims or extinguishing forest fire. 

 

The proposed mathematical model consists of several constraints to handle each aspect of the 

problem. The constraints can be divided into three groups. The first group of constraints (2–7) is 

derived from standard capacitated vehicle routing problems to handle UAV routing paths. The 

second group of constraints (8–15) is devised to track a UAV’s energy consumption and 

determine the amount of recharging. The third group of constraints (16–20) is to track the time 

spent by UAVs and determine the penalty from an excess mission time. 

  rtu u u

ij ij

r t u i j u u

Minimize E x UAVUsed MaxTime  
      

    
         

    
        (1) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   
 

0, , , ,rtu

iix i r t u                                                                                       (2) 

1, ,rtu

ij

t u j

x i r
  

                                                                                                  (3) 
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1, ,rtu

ij

t u i

x j r
  

                                                                                                  (4) 

0 0 0, , ,rtu rtu

j i

j i

x x r t u
 

                                                                                 (5) 

0, , , ,rtu rtu

ih hj

i j

x x h r t u
 

                                                                     (6) 

  , , ,rtu

ij ij

i j

E x Q r t u
 

                                                                                (7) 

  , where 1, ,rtu rtu

ij ij

i j

RemainEnergy Q E x t r u
 

                                      (8) 

 ( 1) ( 1) ,

\{1}, ,

rtu r t u r t u rtu

ij ij

i j

RemainEnergy RemainEnergy Charge E x

t r u

 

 

   

    


                        (9) 

  (1 ),

, ,

rtu rtu rtuCharge RemainEnergy Q M Recharge

r t u

     

     
                                            (10) 

( ) , , ,rtu rtuQ RemainEnergy M Recharge r t u                                      (11) 

, , ,rtu rtuRemainEnergy Charge Q r t u                                                     (12) 

, , ,rtu rtuCharge M Recharge r t u                                                                (13) 

( ) (1 ), , ,rtu rtuRemainEnergy Q M Recharge r t u                              (14) 

max, where ,ru rtuRemainofUAV RemainEnergy t T r u                                  (15) 

( / ) ( ) (1 ),

, ,

rtu rtu rtu rtu

ij ij

i j

d V x Charge RR TotalTime M Recharge

r t u
 

 
       

 
     

                 (16) 

max

( / ) ,

, \{ },

rtu rtu rtu

ij ij

i j

d V x TotalTime M Recharge

r t T u
 

 
    

 
     

                                                        (17) 

max

( / ) ( ) ,

where , ,

rtu ru rtu rtu

ij ij

i j

d V x Q RemainofUAV RR TotalTime M Recharge

t T r u
 

 
       

 
    

     (18) 

,rtu u

c

r t

TotalTime MaxTime T u
 

                                                                           (19) 
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0,uMaxTime u                                                                                                            (20) 

0 1 (1 ),rtu u

j

r t j

x M UAVUsed u
  

                                                                       (21) 

0 ,rtu u

j

r t j

x M UAVUsed u
  

                                                                                   (22) 

, ( , )ij ijE d CR i j                                                                                                             (23) 

1 , , , ,rtu

i N i r t u                                                                                (24) 

1, ( , ) , , ,rtu rtu rtu

i j ijN x N i j r t u                                                    (25) 

 

Constraints (2) through (6) are basic constraints of the route planning problem: 

 Constraint (2) prevents the UAVs from having self-loops in their routes. 

 Constraints (3) and (4) ensure that every location is visited by any UAV exactly once. 

 Constraint (5) forces the UAVs to fly at least one trip and ensure that all trips start and 

end at the base location. 

 Constraint (6) ensures that each UAV arrives and departs location 𝑖 that it visits. 

 

Constraint (7), adopted from the capacitated vehicle routing problem (CVRP), ensures that the 

energy consumed by each UAV in each trip cannot exceed the UAV’s battery capacity. 

 

Constraints (8) through (15) are specific to our problem to handle the energy consumption of 

UAVs: 

 

 If the UAV is deployed in the first trip of each round, constraint (8) ensures that the 

current capacity is equal to the total capacity minus the amount of energy consumption to 

the next location. 

 Constraint (9) calculates the remaining energy of each UAV for the remaining trips 

(except the first trip) of each round, whether the UAV has been recharged or not. 

 Constraints (10) and (11) state that if the recharging occurs, the charging amount equals 

the battery capacity minus the remaining energy. 

 Constraint (12) ensures that the sum of the remaining energy and the charging amount 

does not exceed the capacity. 

 Constraints (13) and (14) decide that if the remaining energy is more than the limit 

capacity of each UAV, then the amount of charging equals zero. 

 Constraint (15) tracks the remaining battery capacity of the last trip in each round of 

UAV 𝑢. 

 

Constraints (16) through (20) are used to track the time spent by UAVs: 

 

 Constraint (16) considers whether the UAV has been recharged or not. If the UAV has 

been recharged, the total time of the UAV equals the time consumed plus the recharging 

time, which is calculated from the amount of charging times the recharge rate of the 

UAV. 
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 Constraint (17) considers the case that the UAV has not been recharged in each trip 

except for the last trip of each round, in which the total time of the UAV equals the time 

consumed by visiting locations. 

 Constraint (18) considers the case that the UAV has not been recharged in the last trip of 

each round, in which the total time of the UAV equals the time consumed plus the 

charging time to fulfill the battery capacity. 

 Constraint (19) calculates the penalty of excess mission time of each UAV. 

 Constraint (20) forces the penalty of excess mission time to be non-negative. 

 

Constraint (21) and (22) determine if UAV 𝑢 is used in the mission. Constraint (23) indicates the 

energy expense from location 𝑖 to 𝑗, which is calculated from distance from 𝑖 to 𝑗 and the energy 

consumption rate of the UAV. Constraints (24) and (25) are the subtour elimination constraints, 

which are used to give orders to all visited locations, excluding the base location (Miller et al., 

1960). 

 

4. Numerical Experiments 

The optimization model formulated in the previous section is solved by using the branch-and-

bound algorithm in IBM ILOG CPLEX Optimization Studio Version 12.10.0.0 (International 

Business Machine, 2019), running on Ubuntu 18.04 LTS with Intel® Xeon® 2.6 GHz 8-core E5-

2640 V3 CPU and VMware 500 GB hard disk. The total cost, flying time of each UAV, and the 

model runtimes from the solutions are reported under grid-network test problems and a real 

terrain map. A grid network, or Manhattan network, used for the test problems has 𝑁 grid points, 

where each point is a two-dimensional coordinate (𝑥, 𝑦), and the distance between two adjacent 

grid points is 1,000 m. The goals of the experiments are to study the effects of the model 

parameters and whether the proposed model can yield optimal solutions under various inputs. So, 

we varied the model parameters over a large number of combinations to explore the effects of 

model parameters and the model limitations. For the objective function to have a monetary cost 

unit, we set the energy unit cost 𝛾 to the electricity billing rate (baht per mWh), the UAV unit 

cost 𝛽 as the rental cost per UAV per day. For the computational resource constraints, we limit 

the CPU time and hard disk resources used for model solving to 48 hours and 500 GB, 

respectively. The model will be prematurely terminated if either one of these two conditions is 

met, and the current best solution is taken as the final (non-optimal) solution. 

 

4.1 Significance of Model Parameters 

To determine which model parameters have significant effects on the costs, we design a single-

replicate two-level factorial experiment for five model parameters (factors A, B, C, D, E): the 

number of grid points, the number of available UAVs, the target mission time, the number of 

maximum allowed trips, and the number of required rounds. We fix the remaining model 

parameters as shown in Table 4. The responses of the experiments are the total cost and the 

individual cost components in the total cost. 

 

Regarding the objective function coefficients, we set the energy unit cost 𝛾 to the electricity 

billing rate of 0.0039 baht per mWh, based on Metropolitan Electricity Authority (MEA) (2020), 

and the UAV unit cost 𝛽 to the rental cost of 166.7 per UAV per day based on the market rates by 

to Drone Robotics Thailand (2020). We fixed the time penalty unit cost 𝛼 to 0.3 baht/second. The 

sensitivity of these coefficients on the optimal solution will be further investigated in Section 4.3. 
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The number of UAVs and grid points used in the experiments are based on the last-mile parcel 

delivery application from the work of Aurambout et al. (2019). A set of 12 (4 by 3) and 20 (5 by 

4) squared grid points with 1000 m between two adjacent grids were used as input maps in our 

experiments, with two and five UAVs available for deployment. We used one and three rounds to 

explore its effects and model limitations. The parameters related to the UAV are based on the 

specifications of the DJI Spark model (DJI, 2020), and the target mission time is chosen based on 

the size of the map, the importance of the mission time, and the UAV capabilities. For example, 

all the parcels are expected to be delivered within an hour for the coverage area between 12 and 

20 km2. 

 
Table 4. Model parameters for two-level factorial experiments. 

 

Varied Parameters Values 

𝑁- Number of grid points 12, 20 

𝑁𝑣- Number of available UAVs 2, 5 

𝑇𝑐- Target mission time None, 60 minutes 

𝑇𝑚𝑎𝑥- Number of maximum allowed trips for each UAV 2, 5 

𝑁𝑅- Number of required rounds 1, 3 

Fixed Parameters Values 

𝛼 - Time penalty unit cost 0.3 baht/second 

𝛽 - UAV unit cost 166.7 baht/UAV (per day) 

𝛾 - Energy unit cost 0.0039 baht/mWh 

𝑄- Battery capacity 16872 watt-hours 

𝑉- UAV velocity 13.86 meter/second 

𝐶𝑅- Battery consumption rate 1.26819 watt-hour/meter 

𝑅𝑅- Battery recharging rate 0.18492 seconds/watt-hour 

 

 

Table 5 shows the experimental results from the single-replicate 25 factorial experiment based on 

the model parameters in Table 4. The results obtained for the number of grid points equal to 20 

are sub-optimal due to the 500 GB hard disk limit constraint. The normal probability plot of the 

effect estimates based on the total cost in Figure 2(a) reveals that many effect estimates take the 

same value at zero and large negative effect estimates on the left. Due to the nature of the 

problem, the penalty cost behaves like a piecewise function that is only positive when the total 

mission time exceeds the target mission time, and the UAV cost behaves like a discrete step 

function of the number of UAVs used. So, the normality assumption of the total cost is not 

justified, and it is inappropriate to draw conclusions about the factor effects by using the normal 

probability plot. The normal probability plots of the effect estimates based on the penalty cost and 

the UAV cost (not shown) also look similar to the one in Figure 2(a). 

 

On the other hand, the energy cost increases with the flying distance and takes on continuous 

values that are neither piecewise nor discrete. As such, we can draw conclusions regarding the 

effects of model parameters on the energy cost from our experiments. As shown in Figure 2(b), 

the normal probability plot of the effect estimates based on the energy cost reveals that the 

number of grid points (Factor A), the number of required rounds (Factor E), and their interaction 

are significant. In other words, the energy cost increases with both the number of grid points and 

the number of rounds. The positive interaction between the two factors means that the effect of 

the number of grid points on the energy cost is higher when the number of rounds increases. 
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Table 5. Results from the single-replicate 25 factorial experiment. 

 

Ca

se 

Grid Points 

(A) 

UAV 

(B) 

Mission 

Time (C) 

Max Allowed 

Trips (D) 

Round 

(E) 

Energy 

Cost 

Penalty 

Cost 

UAV 

Cost 

Total 

Cost 

1 12 2 0 2 1 59.35 0 166.7 226.05 

2 20 2 0 2 1 105.91 0 166.7 272.61 

3 12 5 0 2 1 59.35 0 166.7 226.05 

4 20 5 0 2 1 105.91 0 166.7 272.61 

5 12 2 3600 2 1 59.35 23.998 166.7 250.048 

6 20 2 3600 2 1 105.91 0 333.4 439.31 

7 12 5 3600 2 1 59.35 23.998 166.7 250.048 

8 20 5 3600 2 1 105.91 0 333.4 439.31 

9 12 2 0 5 1 59.35 0 166.7 226.05 

10 20 2 0 5 1 105.91 0 166.7 272.61 

11 12 5 0 5 1 59.35 0 166.7 226.05 

12 20 5 0 5 1 105.91 0 166.7 272.61 

13 12 2 3600 5 1 59.35 23.998 166.7 250.048 

14 20 2 3600 5 1 105.91 0 333.4 439.31 

15 12 5 3600 5 1 59.35 23.998 166.7 250.048 

16 20 5 3600 5 1 105.91 0 333.4 439.31 

17 12 2 0 2 3 178.05 0 166.7 344.75 

18 20 2 0 2 3 317.74 0 333.4 651.14 

19 12 5 0 2 3 178.05 0 166.7 344.75 

20 20 5 0 2 3 317.74 0 333.4 651.14 

21 12 2 3600 2 3 178.05 1152 333.4 1663.45 

22 20 2 3600 2 3 317.74 3750.3 333.4 4401.44 

23 12 5 3600 2 3 182.15 148.21 500.1 830.46 

24 20 5 3600 2 3 324.73 700.21 833.5 1858.44 

25 12 2 0 5 3 178.05 0 166.7 344.75 

26 20 2 0 5 3 317.74 0 333.4 651.14 

27 12 5 0 5 3 178.05 0 166.7 344.75 

28 20 5 0 5 3 317.74 0 333.4 651.14 

29 12 2 3600 5 3 178.05 1152 333.4 1663.45 

30 20 2 3600 5 3 317.74 3750.3 333.4 4401.44 

31 12 5 3600 5 3 182.15 148.21 500.1 830.46 

32 20 5 3600 5 3 324.73 700.21 833.5 1858.44 

 

 
 

          
(a) Total cost as the response.                                       (b) Energy cost as the response. 

 

Figure 2. Normal probability plots of effect estimates based on the total cost and the energy cost. 
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4.2 Exploring Effects of Model Parameters 

To better understand the effects of other model parameters such as the number of points to visit 

and the time penalty unit cost, the following test problems shown in Table 6 are generated: 

 

 Cases 1 to 5 represent a small deployment area with two UAVs available, where 12 grid 

points are used. The target mission time is fixed to 1,800 seconds, and the effect of time 

penalty unit cost 𝛼 is studied by varying it as 0, 0.01, 0.1, 0.2, and 0.3 baht per second. 

 Case 6 is the same as case 5 except that the number of available UAVs is increased from 

2 to 5. 

 Cases 7 to 11 represent a larger deployment area with two UAVs available, where 20 grid 

points are used. The target mission time is changed to 3,600 seconds, and the effect of 

time penalty unit cost 𝛼 is studied by varying it as 0, 0.01, 0.1, 0.2, and 0.3 baht per 

second. 

 Case 12 is the same as case number 11 except that the number of available UAVs is 

increased from 2 to 5. 

 

The maximum allowed trips per UAV and the number of required rounds are two trips and one 

round, respectively. The energy unit cost 𝛾 is kept to 0.0039 baht per mWh based on the actual 

electricity billing rate from Metropolitan Electricity Authority of Thailand, and the UAV unit cost 

𝛽 is fixed to 166.7 baht per UAV (per day) based on the market rates by Drone Robotics Thailand 

(2020). 

 

Table 6 shows the results obtained on the above test problems. The row Optimality status 

indicates whether the solution is optimal or sub-optimal due to CPU time limit or disk space limit. 

We observe that the optimal solutions are found under less than two hours only in the case of 12 

grid points. When the number of available UAVs increases to five or the number of grid points is 

increased to 20, the model cannot be solved within the 48-hour CPU time limit or 500 GB disk 

space limit. Another observation is the relationship between the time penalty unit cost and the 

number of UAVs involved. For example, if the time penalty unit cost gets higher, as in cases 3 to 

5, the model will add another UAV to decrease the time penalty cost. 

 

From Table 7, cases 13–16 and 17–18, respectively, aim to explore the effects of the number of 

rounds and the UAV unit cost. For cases 13–16, the number of maximum allowed trips is set to 

five. Allowing more trips per UAV leads to a longer time to achieve an optimal solution, even 

though it yields the same total cost compared to case number 5 in Table 6. The reason is that 

allowing more trips adds more options and hence increases the search space for the model. The 

results in cases 13–16 show that the number of required rounds directly affects the total cost and 

the disk space usage. The available computing resources could not solve the model if the number 

of rounds is set to three. When the UAV unit cost increased from 300 to 500 baht/second (cases 

17 and 18), the model will reduce the number of UAVs used in the mission to minimize the total 

cost. 
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Table 6. Results on the grid problems with two maximum allowed trips and one round. 

 

 

Case No. 

1 2 3 4 5 6 7 8 9 10 11 12 

Input 

Parameters 

# UAVs 2 2 2 2 2 5 2 2 2 2 2 5 

# Grids 12 12 12 12 12 12 20 20 20 20 20 20 

Target mission time (s) 1800 1800 1800 1800 1800 1800 3600 3600 3600 3600 3600 3600 

Energy unit cost 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 

Time penalty unit cost 0 0.01 0.1 0.2 0.3 0.3 0 0.01 0.1 0.2 0.3 0.3 

UAV unit cost  166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 

 
Optimality status optimal optimal optimal optimal optimal 

time 

limit 

HDD 

limit 

HDD 

limit 

HDD 

limit 

HDD 

limit 

HDD 

limit 

HDD 

limit 

Costs 

Energy cost 59.35 59.35 59.35 66.35 66.35 66.35 105.91 105.91 105.91 105.91 105.91 105.91 

Time penalty cost - 18.8 188 102.74 154.1 154.1 - 29.67 0 0 0 0 

UAV cost 166.7 166.7 166.7 333.4 333.4 333.4 166.7 166.7 333.4 333.4 333.4 333.4 

Total Cost 226.05 244.85 414.05 502.49 553.85 553.85 272.61 302.28 439.31 439.31 439.31 439.31 

Total Time 

Consumed 

Per UAV 

UAV1 0 3679.99 0 1840 2273.69 0 0 0 3066.66 3500.35 3500.35 0 

UAV2 3679.99 0 3679.99 2273.69 1840 0 6567.01 6567.01 3500.35 3066.66 3066.66 0 

UAV3 - - - - - 2273.69 - - - - - 3500.35 

UAV4 - - - - - 0 - - - - - 3066.66 

UAV5 - - - - - 1840 - - - - - 0 

 
CPU Runtime (h) 0.75 1.72 0.81 0.05 0.01 48 10.04 21.49 16.85 19.59 24.11 6.89 

 

 

 

 

Table 7. Results on the grid problems with different maximum allowed trips and rounds. 
 

 

Case No. 

13 14 15 16 17 18 

Input Parameters 

# UAVs 2 2 2 5 2 2 

# Grids 12 12 12 12 12 12 

# Maximum allowed trips 5 5 5 5 2 2 

Target mission time (s) 1800 1800 1800 1800 1800 1800 

# Rounds 1 2 3 3 1 1 

Time penalty unit cost 0.3 0.3 0.3 0.3 0.3 0.3 

UAV unit cost 166.7 166.7 166.7 166.7 300 500 

 
Optimality Status optimal optimal HDD limit HDD limit optimal optimal 

Costs 

Energy cost 66.35 118.7 178.05 192.04 66.35 59.35 

Time penalty cost 154.1 1128 2232 872.21 154.1 564 

UAV cost 333.4 333.4 333.4 833.5 600 500 

Total Cost 553.85 1580.1 2743.45 1897.75 820.45 1123.35 

Total Time Consumed 

Per UAV 

UAV1 2273.69 3679.99 7359.98 3679.99 2273.69 3679.99 

UAV2 1840 3679.99 3679.99 1840 1840 0 

UAV3 - - - 1840 - - 

UAV4 - - - 2273.69 - - 

UAV5 - - - 2273.69 - - 

 
CPU Runtime (h) 0.03 8.01 18.82 11.25 0.16 1.69 
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From the experimental results on the grid networks in this section, we can conclude the 

following: 

 

 Due to computational limitations, the model cannot handle problem instances with a large 

number of points to visit or a large number of rounds. 

 The time penalty unit cost and the UAV unit cost have an opposite effect on the number 

of UAVs to be deployed. The increase of the time penalty unit cost will lead to more 

UAVs being used to reduce the total mission time, while the increase of the UAV unit 

cost may lead to fewer UAVs being used, at the expense of a higher mission time. For a 

time-critical mission, using a high time penalty unit cost is preferable to get a low total 

mission time. 

 

4.3 Sensitivity Analysis 

Since our model is a mixed-integer one, we use a graphical method for sensitivity analysis to 

study how the optimal solution is affected by changes in the model parameters, including the 

problem’s objective function coefficients and the right-hand sides of the constraints. Twelve grid 

points with 2 UAVs and a maximum allowed trips per UAV of 2 were implemented in both cases. 

The number of required rounds was set at 1 with a target mission time of 1,800 seconds. From 

(1), the problem’s objective function coefficients are the energy unit cost (𝛾), the time penalty 

unit cost (𝛼), and the UAV unit cost (𝛽). We fixed one of the coefficients at the time and varied 

the other two coefficients around their default value so that the optimal solutions or total costs as 

a function of the two varied coefficients can be visualized. The following three cases are used: 

 

 Case 1: Fixed: Energy unit cost of 0.0039 baht/mWh 

Varied: (1) Time penalty unit cost [0, 0.05, 0.1, 0.3, 0.5] 

(2) UAV unit cost [166.7, 200, 250, 300, 350] 

 Case 2: Fixed: Time penalty unit cost of 0.3 baht/second 

Varied: (1) Energy unit cost [0.003, 0.004, 0.005, 0.006, 0.007] 

(2) UAV unit cost [166.7, 200, 250, 300, 350] 

 Case 3: Fixed: UAV unit cost of 166.7 baht/UAV 

Varied: (1) Time penalty unit cost [0, 0.05, 0.1, 0.3, 0.5] 

(2) Energy unit cost [0.003, 0.004, 0.005, 0.006, 0.007] 

 

In each case, the optimal solutions are interpolated to obtain a smooth surface, as shown in Figure 

3. From Figure 3(a), it can be observed that the UAV unit cost and the time penalty unit cost 

appears to have a synergetic effect on the total cost. Namely, the total cost increases faster with 

the time penalty unit cost at the higher UAV unit cost and vice versa. When the UAV unit cost is 

high, the model may decide to use only a few UAVs, which prolongs the mission time and 

amplifies the effect of the time penalty cost. 

 

The UAV unit cost and the energy unit cost appear to act relatively independently on the total 

cost, as shown in Figure 3(b). Changing the UAV unit cost does not affect how the total cost 

increases with the energy unit cost, as the total flying distance remains the same. Also, the total 

cost is marginally affected by the increase of the energy unit cost, as the energy cost contributes 

only a small portion of the total cost. Finally, the time penalty unit cost significantly affects the 
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total cost for a given UAV unit cost, as shown in Figure 3(b), independent of the energy unit cost. 

In summary, among the three objective function coefficients, the total cost is most sensitive to the 

time penalty unit cost but least sensitive to the energy unit cost, and there exists the synergetic 

effect between the time penalty unit cost and the UAV unit cost. 

 

 
(a) Case 1: Effect of time penalty unit cost and UAV unit cost (Energy unit cost 0.0039 baht/mWh). 

  
(b) Case 2: Effect of energy unit cost and UAV unit cost (Time penalty unit cost 0.3 baht/second). 

 
(c) Case 3: Effect of energy unit cost and Time penalty unit cost (UAV unit cost 166.7 baht/UAV). 

 

Figure 3. Sensitivity analysis on the coefficients of the objective function. 
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The parameters for the right-hand sides of the constraints are the Battery Capacity (Q) 

from constraint (7), Target Mission Time (Tc) from constraint (19), and Energy Consumption 

Rate (CR) from constraint (23). The effects of these three parameters on the total cost are shown 

in Figure 4. From Figure 4(a), too low battery capacities result in an infeasible solution because 

UAVs cannot their trip. When the battery capacity is sufficiently high, the UAVs will be able to 

finish their trips. However, they need many returns to the base for recharging, resulting in a high 

total cost. As the battery capacity increases, the UAVs will need to return less and less to the base 

for recharging, hence a smaller total cost. If the battery capacity increases beyond a certain 

threshold, it will no longer reduce the total cost because the UAVs can complete the mission 

without any recharging, minimizing the energy cost component in the total cost to zero. The 

effect of the target mission time on the total cost is straightforward, as shown in Figure 4(b). The 

total cost decreases with the target mission time until the time penalty cost component in the total 

cost reaches zero, and the total cost is no longer affected by the target mission time. The effect of 

the energy consumption rate on the total cost is opposite of that of the target mission time. 

However, too high an energy consumption rate leads to an infeasible solution because the energy 

consumption of each UAV exceeds its battery capacity to finish the mission. 
 

  
(a) Battery Capacity (Q)                          (b) Target Mission Time (Tc) 

 
(c) Energy Consumption Rate (CR) 

 

Figure 4. Sensitivity analysis on the right-hand sides of the constraints. 
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4.4 Experimental Results on Real Terrain 

We also experimented on a real terrain, which is a part of the downtown area of Nong Khai 

province, Thailand, to examine the feasibility and computational performance of our proposed 

model and see whether it shares the same behavior as in the grid network studied in the previous 

section. First, the raw map is obtained from Google Maps, and the map is manually discretized 

into 25-by-15 grid points, where the distance of two adjacent grid points is 130 meters. Then, 15 
and 30 grid points are manually specified as the locations to visit to explore the model limitations 

on the number of grid points of a real terrain problem. The time penalty unit cost is varied as 0.3 

and 0.6 baht/second to emphasize the mission that needs to be finished quickly. The target 

mission time is set to 720 and 1440 seconds based on the number of grid points and the actual 

size of the area. Two of UAVs with the number of maximum allowed trip per UAV of 2 is 

considered. Only one round is considered in this mission for all cases. The energy unit cost and 

UAV unit cost are 0.0039 baht per mWh and 166.7 baht per UAV, respectively. 

 

The computational results from four cases are shown in Table 8, with flying paths and timing 

diagrams shown in Figure 5. The time penalty unit cost affects the number of UAVs used. For the 

case of 15 grid points (cases 1 and 2), the lower time penalty unit cost (0.3 baht/second) leads to 

only one UAV being used at the expense of longer mission time, while the higher time penalty 

unit cost (0.6 baht/second) results in two UAVs being used. In either case, the completion times 

exceed the target mission times, but the latter case completes in less time as more UAVs are 

deployed. The results of case 1 and case 2 in Table 8 suggest that, for a time-sensitive mission, 

the solution with a higher total cost may be preferred if it gives a lower time penalty cost. 

However, when we implement 30 grid points in the experiments (cases 3 and 4), the model 

cannot be solved within the 48-hour CPU time limit. 

 

 
Table 8. Costs and runtimes on real terrain area. 

 

 

Case No. 

1 2 3 4 

Input Parameters 
# grids 15 15 30 30 

Time penalty unit cost 0.3 0.6 0.3 0.6 

 
Optimality Status Optimal optimal time limit time limit 

Cost 

Energy cost 29.32 32 59.44 59.44 

Time penalty cost 315.81 296.53 214.06 428.12 

UAV cost 166.7 333.4 333.4 333.4 

Total Cost 511.83 661.93 606.90 820.96 

Total Time Consumed Per UAV 
UAV1 1772.70 924.83 2055.90 1537.70 

UAV2 0.00 1009.38 1537.70 2055.90 

CPU Runtime (h) 4.83 0.05 48 48 
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(a) Time penalty unit cost 0.3 baht/second. One UAV is used with a total time of 1772.7 seconds for 15 

grid points. 

 

 
(b) Time penalty unit cost 0.6 baht/second. Two UAVs are used with total times of 1009.38 and 924.83 

seconds for 15 grid points. 

 

 
(c) Time penalty unit cost 0.3 baht/second. Two UAVs are used with total times of 2055.90 and 1537.70 

seconds for 30 grid points. 

 

 
(d) Time penalty unit cost 0.6 baht/second. Two UAVs are used with total times of 1537.70 and 2055.90 

seconds for 30 grid points. 
 

Figure 5. Flying paths and timing diagrams for the real terrain scenario. 



Phalapanyakoon & Siripongwutikorn: Route Planning of Unmanned Aerial Vehicles under Recharging…  
 

 

1457 | Vol. 6, No. 5, 2021 

5. Conclusions 

In this research, the problem of route planning of multiple rechargeable UAVs flying multiple 

trips and rounds to cover the set of predefined locations under mission time constraints is 

introduced and studied as a novel approach for route planning of a rechargeable electric fleet of 

UAVs. Compared to existing works, the proposed model incorporates the UAV recharging period 

that depends on the UAV remaining energy when returning to the base, and the total cost is 

computed as the sum of the excess mission time, the electric cost contributed by the recharging, 

and the usage cost of deploying UAVs, which more accurately characterizes realistic scenarios. 

The problem is formulated as a mixed-integer model and solved under various settings of the 

model parameters with test problems and a real terrain area. The experimental results show that 

our mathematical model can obtain the optimal solutions for small problem sizes where only a 

moderate number of grid points and UAVs are considered. The model’s ability to obtain optimal 

solutions for larger problem sizes is only limited by allocated CPU time and disk space. The 

number of available UAVs and the number of maximum allowed trips per UAV increase the 

search space, and there is a trade-off between the UAV unit cost and the time penalty unit cost. 

The model will decide whether it will deploy additional UAVs to reduce the maximum time of 

each UAV. Assigning more weight to the time penalty in the objective function may reduce the 

time penalty cost at the expense of using more UAVs, and hence a higher UAV usage cost. To 

demonstrate the model’s practicality, the model was also studied in real terrain cases where the 

optimal solutions can be obtained under a network of 15 grid points. The sensitivity analysis of 

the objective function coefficients reveals that the total cost is most sensitive to the time penalty 

unit cost but least sensitive to the energy unit cost, and there exists the synergetic effect between 

the time penalty unit cost and the UAV unit cost. 

 

For the research limitations, the proposed model only considers homogeneous UAVs. The UAV 

load-carrying capacity constraint that limits the number of visiting locations of each UAV is not 

considered. Also, the model is unable to yield optimal solutions if the network size or the number 

UAVs becomes large. The straightforward extension of this work is to integrate the fleet of 

heterogeneous UAVs and load-carrying capacity constraints to enhance the model’s applicability 

in real-world situations. More importantly, heuristic methods must be explored to handle a large 

problem size. 
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