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Abstract 
The environment of Flow Shop Scheduling Problems (FSSPs) to minimize the makespan of n jobs that have to be 

performed on m machines is considered. In real-world manufacturing systems nowadays, the uncertain circumstances to 

execute these jobs have an essential effect on the final scheduling scheme. This paper puts forward an integrated 

optimization heuristics that combine two distinct factors in flow shop scheduling. These factors are the variation in the 

processing times and the machine's reliability (machine failure rate), which must be considered to obtain optimal 

scheduling under stochastic assumptions. Two new approaches have been proposed in this work to achieve a robust 

expected makespan in the stochastic environment. The procedure is to add buffer time depending on the machine failure 

rate. Hence, the first procedure is to add buffer time to each operation in the mission according to the reliability of all 

machines (system reliability). The second one is to add buffer time to each operation depending on the reliability of each 

machine (machine reliability). For solving this problem with consideration to minimizing the expected makespan and 

maximizing the robustness simultaneously, the well-known (NEH) heuristic is implemented to schedule a set of jobs. 

Computational simulations are carried out with some well-studied problems taken from the OR-Library. Experimental 

results show that the proposed methods provide robust and efficient solutions. Moreover, the effects of some parameters 

on the optimization performance are discussed. 

 

Keywords- Flow shop scheduling, Machine failure rate, Uncertainty, Robustness. 

 

 

 

1. Introduction 
Scheduling is considered the best tool that helps the decision-makers at industrial foundations, for 

example, to find the optimal sequence of the number of jobs. The main problem that the decision-

makers face every day in manufactories is how to schedule a set of jobs to finish the mission early. 

The simple concept of flow shop scheduling is that there are n jobs that have to be performed on m 
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machines to minimize the completion time for the last job (makespan). The procedure is to execute 

these jobs in an ordering sequence according to the selected scheduling plan. In other words, they 

assign limited resources to several jobs during a period so that the finishing time is minimum. 

Determination of the sequence to perform the activities on the number of machines is very 

important to minimize the makespan. Permutation Flow Shop Scheduling Problems (PFSSPs) have 

been well- addressed for deterministic cases, in which all parameters are given and known at the 

beginning of the scheduling and will not change over time. 

 

Scheduling is a complex optimization problem in its own right. Stochastic flow shop scheduling 

with uncertain processing time is difficult because of inaccurate objective estimation, colossal 

search space and multiple local minima, especially NP-hardness (wang et al., 2005a). In flow shop 

scheduling, all jobs have the same processing line. Jobs are initially executed on the first machine, 

and to the second one in the same sequence, until the execution reaches the last machine. The results 

of this problem are in a solution space of 𝑛!𝑚 (Michael, 2018). However, solving this problem, 

without considering the uncertainties may lead to seriously suboptimal solutions or rescheduling. 

Few studies have considered the uncertain parameters that should be investigated to obtain a robust 

and reliable scheduling plan. 

 

Over the years, the number of researchers interested in flow shop scheduling problems has 

increased. This increase is due to the technology growth, allowing faster run times and complex 

problems to be disbanded. There are many scheduling approaches to find the optimal sequence to 

perform a specific number of jobs, assuming that all parameters are known and will not change 

over time. Practically, the operations are usually influenced by uncertain and unexpected changes, 

affecting the final plan decision. Therefore, it is very substantial to study sequencing and scheduling 

under uncertain situations since they can cause disturbances and infeasibilities on scheduling plan, 

and thence the makespan. For this reason, over the last years, researchers tended to investigate this 

problem. See (Gourgand et al., 2000; González-Neira et al., 2017). 

 

In order to reduce production costs and increase productivity, most manufacturing facilities attend 

to implement the production scheme and scheduling planning. There are a large number of 

unexpected disruptions that may invalidate the original schedules in real-life production. The 

unexpected events that accrue during the scheduling operation, such as variation in processing 

times, machine breakdown, newly arriving jobs and delay in job availability among others lead to 

scramble last-minute scheduling. However, the decision-makers try to avoid these disturbances, by 

either using reactive or proactive scheduling. In reactive scheduling, the problem is resolved by 

rescheduling the jobs if any unexpected event occurs and changes the data information. On the 

other hand, proactive scheduling is used to robust the initial scheduling plan to deal with any 

disturbance. The fundamental problem is how to avoid the increase in the makespan and the cost 

of the mission if any unexpected event occurs. Nonetheless, if the decision-maker chooses robust 

flow shop scheduling to overcome the disturbance, the makespan may be slightly more than regular 

scheduling. 

 

Robust scheduling is defined in three considerations: 

(i) If it has a relatively low cost than other schedules when disruption occurs and uses right-

shifting as a scheduling algorithm. This definition was introduced by Jensen (2003). 

(ii) If it can keep up the executing without consistency when the external events (disruption) 

occur. In other words, keeping the effects of a change on the overall schedule components 

at a minimum. See (Policella et al., 2004). 
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(iii) If it has a high probability of ensuring that makespan will not exceed the expected 

completion time. This definition was introduced by Liu et al. (2011). 

 

In classical flow shop scheduling, the makespan will be deterministic but unrealistic, and this is 

because of the neglect of unexpected events. In contrast, stochastic flow shop scheduling gives 

immunity from these unexpected events. The fundamental factors affecting scheduling are 

processing times and machines. For most scheduling problems made so far, the processing time of 

each job on each machine has been assigned as a known real number. However, in the real world, 

information is often ambiguous or imprecise. The variation of processing times occurs either 

because of late arrival time to a machine or a stalled (tarry) machine. On the other hand, under the 

assumption that machines are always in a good state and available, the literature has widely 

addressed the scheduling problems. In terms of performance, the number of failures of machines 

on their age determines their status. Therefore, adopting the machine's failure rate and estimating 

it using statistical tools to include it as an uncertain factor in the scheduling procedure gives a 

coherent scheduling plan. It is evident that there is a relationship between the variation in processing 

times and the machine's reliability, that affect the scheduling scheme, i.e., if a machine did not 

operate in the given processing time, this is because there is a defect in this machine. The processing 

time of this operation will increase. This change in the processing times leads to a different 

makespan. 

 

The paper is divided into the following sections: the literature corresponding to this paper is 

reviewed in Section 2. Problem description and NEH heuristic is given in Section 3. A robust 

expected makespan of the flow shop scheduling environment is introduced in Section 4. The 

proposed procedures are validated by computational experiments and are presented in Section 5. 

Finally, Section 6 covers the conclusions. 

 

2. Problems under Consideration: A Literature Review 
Permutation Flow Shop Scheduling Problems (PFSSPs) investigate the optimal sequence of 

arranging n jobs that must be performed on m machines to minimize the completion time of the 

last machine (makespan). Although many articles had dealt with deterministic flow shop scheduling 

problems to achieve different types of objectives such as mean flow time, machine idle time, mean 

flow time, due date fulfillment, among others, the following paragraphs will shed light on some 

articles that addressed the stochastic flow shop scheduling problems. 

 

Ignall and Schrage (1965) developed a branch-and-bound algorithm for three machines flow shop 

scheduling problems with fuzzy processing times. Gourgand et al. (2000), submitted a review paper 

for stochastic flow shop scheduling for m machines and a set of n jobs, with given release dates to 

be executed. Two kinds of random events are distinguished: the variation in the processing times 

and the machine's breakdowns. The authors proposed an extension of the notation to consider 

stochastic events. Celano et al. (2003), developed a proper genetic algorithm (GA) for solving the 

fuzzy flow shop scheduling problems. The optimization involves two different objectives: the 

completion time minimization and the due date fulfillment; both the single and multi-objective 

configurations are considered. A new ranking criterion is proposed. Balasubramanian and 

Grossmann (2003) presented a non-probabilistic treatment of scheduling optimization under 

uncertainty. The concepts from fuzzy set theory are used to describe the imprecision and 

uncertainty in the task durations. Mixed-Integer Linear Programming (MILP) models are 

presented, derived from applying this approach to two different flow shop scheduling problems and 

new product development process scheduling. A tabu search is implemented and described to solve 
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large scale problems. Temİz and Erol (2004) applied the fuzzy concept to deal with stochastic flow 

shop scheduling problems. Allaoui and Artiba (2004) dealt with the hybrid flow shop scheduling 

problems under maintenance constraints to optimize several objectives based on flow time and due 

date. In this model, setup, transportation times and cleaning are considered. Gourgand et al. (2005), 

proposed a theorem based on Markov chains and Chapman-Kolmogorov equations to compute the 

expected makespan of static stochastic permutation flow shop. The proposed scheme is combined 

with a metaheuristic based on simulated annealing for the scheduling problem. The job processing 

times are assumed to be exponentially distributed with a known rate. Wang et al. (2005a) employed 

and incorporated a hypothesis-test method, an effective methodology in statistics, into a GA to 

solve the stochastic flow shop scheduling problem to avoid premature convergence of the GA. The 

proposed approach is based on statistical performance and a hypothesis test. Wang et al. (2005b) 

addressed the problem of flow shop scheduling with stochastic processing times. Ordinal 

Optimisation (OO) and Optimal Computing Budget Allocation (OCBA) are hybridized as well as 

a genetic algorithm (GA) to suggest a Genetic Ordinal Optimization (GOO) approach. 

Swaminathan et al. (2007) studied the due dates in a flow shop for jobs that have different weights 

and uncertain processing times. Enforcement of a permutation schedule to varying degrees for 

dynamic flow shop is investigated to minimize Total Weighted Tardiness (TWT). Chaari et al. 

(2011), studied a hybrid flow shop scheduling problem whereas the processing time of each job for 

each machine at each stage is the source of uncertainty. Genetic algorithm is developed to solve 

the flow shop problems. Liu et al. (2011), proposed an improved genetic algorithm with a new 

generation scheme to maximize the probability of ensuring that makespan will not exceed the 

expected completion time. Huang et al. (2012), proposed an improved algorithm to search optimal 

sequence for flow shop scheduling problems with fuzzy processing times and fuzzy due dates. The 

longest common substring method combines with the random key method is proposed. Also, the 

longest common substring method combined with rearranging the mating method improves the 

search efficiency of the genetic algorithm. For application in large-sized problems, they also 

enhance this modified algorithm by CUDA based parallel computation. Baker and Altheimer 

(2012) investigated the stochastic flow shop problems and proposed heuristic methods. With simple 

computational requirements, three procedures are devised having been able to solve the 

deterministic counterpart. Nakhaeinejad and Nahavandi (2013) developed a method to solve a 

multi-objective flow shop scheduling in a fuzzy environment where processing times are fuzzy 

numbers. The objective functions are designed to minimize the makespan, the mean flow time and 

the machine idle time. The results show that the proposed algorithm can determine the preferable 

sequence by finding a nondominated solution for different degrees of satisfaction of constraints. 

Katragjini et al. (2013), three types of disruption are generated and employed so as to 

simultaneously interrupt the original schedules. Rescheduling algorithms are developed to 

accomplish the twofold objective of establishing a standard framework on the one hand, and 

proposing rescheduling methods that seek a good trade-off between schedule quality and stability 

on the other. Rahmani and Heydari (2014), a two-step procedure is used and introduced a proactive-

reactive method. An initial robust solution is produced proactively against uncertain processing 

times in the first step using a robust optimization approach. In the next step, an appropriate reactive 

method is adopted to deal with this unexpected event when an unexpected disruption occurs. Juan 

et al. (2014), proposed an algorithm that combines Monte Carlo simulation with an Iterated Local 

Search metaheuristic. A simulation-optimization algorithm for the Permutation Flow Shop Problem 

with Stochastic Processing Times (PFSPST) is described. The simheuristic approach is based on 

the assumption that high-quality solutions for the deterministic version of the problem are likely to 

be high-quality solutions for the stochastic version. The use of reliability analysis techniques is 

proposed to analyze simulation outcomes or historical observations on the random variable 
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representing the makespan associated with a given solution. Rahmani et al. (2014), proposed a 

multi-objective mixed-integer linear programming model. Release times and processing times are 

assumed to be stochastic variables with a normal distribution. The objective functions are 

minimizing three performance measures including makespan, total flow time and total tardiness. 

Chance Constrained Programming (CCP) approach and Fuzzy Goal Programming (FGP) are 

applied to deal with the stochastic parameters and multi-objective functions. Due to the complexity 

of the problem, an adapted genetic algorithm is implemented to solve large-sized problems. 

Framinan and Perez-Gonzalez (2015) addressed estimating the expected makespan for the 

permutation flow shop scheduling problems. The number of samples or simulation runs usually 

employed in the literature may not be adequate to derive robust conclusions concerning the 

performance of the different heuristics for a medium/large variation of the processing times. A 

procedure with a different number of replications is introduced so as to ensure that the percentage 

error in estimating the expected makespan is bounded with a high probability. They found that the 

most deterministic flow shop heuristics are efficiency for the stochastic flow shop problems. 

Gholami-Zanjani et al. (2017), proposed two approaches for solving flow shop scheduling under 

uncertainties of data: Robust Optimisation (RO) and fuzzy optimization. First, a deterministic 

mixed-integer linear programming model is introduced for the general problem. Then, its robust 

counterpart of the proposed model is dealt with. Afterward, the fuzzy flow shop model is 

developed. González-Neira et al. (2017), provided an overview of FSSP under uncertain 

circumstances and its role in production logistics. González-Neira et al. (2019), presented a 

simheuristic algorithm that hybridizes the Tabu Search metaheuristic and the Pareto Archived 

Evolution Strategy algorithm with a Monte Carlo Simulation process to minimize the expected 

tardiness and standard deviation of tardiness. Results show significant probability distributions and 

coefficients of variation in the objective functions and better results for expected tardiness and 

standard deviation of tardiness. Al-Behadili et al. (2020), proposed a multi-objective model and 

adapted a predictive-reactive based Biased Randomised Iterated Greedy (BRIG) approach for the 

permutation flow shop scheduling problem. The extensive experiments and statistical analysis 

demonstrate that the proposed multi-objective model is better than the other models in reducing the 

relative percentage deviation. Zanjani et al. (2021), developed a multi-objective Robust Mixed-

Integer Linear Programming (RMILP) model where the due date and processing time are assumed 

uncertain. Fuzzy Goal Programming (FGP) is applied to solve this problem. CPLEX is 

implemented to study and validate the efficiency of the developed RMILP model. The developed 

model can assign jobs to available machines to obtain the best trade-off between two objectives 

including total tardiness and makespan under uncertain parameters. Xu et al. (2021), proposed a 

Genetic Algorithm based on the Relative Entropy of Fuzzy Sets (REFS_GA). The authors 

established a mathematical model of the multi-objective. In REFS_GA, the Pareto front is mapped 

to a fuzzy set, and the relational entropy coefficient of fuzzy sets is used to measure the similarity 

between the fuzzy sets of Pareto solutions and the ideal solution. Experimental results show that 

the REFS_GA has a good solution and performance than other methods. Around 100 articles about 

flow shop and flexible flow shop scheduling problems published were analyzed and classified. 

 

3. Problem Description 
In Permutation Flow Shop Scheduling Problems (PFSSPs), n jobs are supposed to be scheduled on 

m machines with identical orders to minimize the maximum completion time or makespan. The job 

Ji, i = 1,...,n include m operations Oij , 𝑗 = 1, … , 𝑚, that is Ji ={Oi1,Oi2,...,Oim}. Each operation will 

process on a specific machine Mj., to take 𝑃𝑖𝑗  time unit. Furthermore, the operations for all jobs 

will proceed through the machines in the same order and each machine processes the n jobs in the 

same sequence which denoted by permutation set 𝜋 = {𝜋1, 𝜋2, … , 𝜋𝑛}. The PFSSP has been proved 
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by Rinnooy Kan (1976) as NP-hard problem. Mathematically, PFSSP is expressed as n/m/F/Cmax 

where n is the total number of jobs, m is the total number of machines, F refers to flow shop problem 

and Cmax is a criterion for the makespan that needs to be minimum. For more details see (Conway 

et al., 2003). The makespan of PFSSP depending on the permutation job set π will calculate 

according to the following formula presented by (Akhshabi et al., 2012; Li and Yin, 2013). 

𝐶(𝜋1, 1) = 𝑃𝜋1,1  

𝐶(𝜋𝑖, 1) = 𝐶(𝜋𝑖−1, 1) + 𝑃𝜋𝑖,1              𝑖 = 2, … , 𝑛 

𝐶(𝜋1, 𝑗) = 𝐶(𝜋1, 𝑗 − 1) + 𝑃𝜋1,𝑗         𝑗 = 2, … , 𝑚                                                                            (1) 

𝐶(𝜋𝑖, 𝑗) = 𝑚𝑎𝑥{𝐶(𝜋𝑖−1, 𝑗), 𝐶(𝜋𝑖, 𝑗 − 1)} + 𝑃𝜋𝑖,𝑗     𝑖=2,…,𝑛 ,𝑗=2,…,𝑚         

 

Then the makespan is 

𝐶𝑚𝑎𝑥(𝜋) = 𝐶(𝜋𝑛, 𝑚)                                                                                                                     (2) 

 

where 𝑃𝜋𝑖,𝑗  refers to the operation processing time of job 𝜋𝑖 on machine Mj. and 𝐶(𝜋𝑖, 𝑗) represents 

the completion time of job 𝜋𝑖 on machine Mj  

 

The aim is to find the best arrangement for the n jobs in permutation set 𝜋 which achieves the 

minimum makespan. 

 

The deterministic PFSSP assumptions are categorized as follows: 

(i) All jobs are ready at time zero and begin as soon as their turn comes. 

(ii) Processing times are known and deterministic. 

(iii) Setup times are included in processing times. 

(iv) Machines are continuously available and each one can only process one job at a time. 

(v) Each job can only be processed on one machine for once. 

(vi) Job preemption is not allowed. 

(vii) Buffer capacity between machines is infinite. 

(viii) Only permutation schedules are allowed. 

(ix) All jobs should proceed in the same order.  

 

In stochastic PFSSPs, most of the deterministic assumptions are considered, but the processing 

times will change from deterministic to a random variable with distribution function G. Also, the 

machines are not always available. 

 

3.1 NEH Heuristic 
Nawaz et al. (1983) introduced the well-known heuristic algorithm (NEH) which is the best to date 

construction heuristic for solving the PFSSP for the deterministic flow shop scheduling case. The 

heuristic is described as follows: 

 

(i) Sort the n jobs in non-increasing order of their total processing times. 

(ii) Take the first two jobs and schedule them to minimize the partial makespan as if there were 

only these two jobs. 

(iii) For k=3 to n do Step 4. 

(iv) Insert the k-th job at the place, which minimizes the partial makespan among the k possible 

ones. 
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4. Robust Expected Makespan 
The flow shop scheduling problems have been traditionally solved. Their solution might be 

unreasonable because the uncertainty effects are not taken into account. This section describes the 

solution for flow shop scheduling in uncertainty cases. The variation in the processing times due to 

the machine failure rate is considered. One of the most familiar ways to make the scheduling more 

robust and reliable is adding buffer time among jobs. However, if this additional time is more than 

needed, the completion time will be greater than the vulnerable scheduling, leading to high 

executing cost for this scheduling. On the other hand, if this additional time is too small, the 

scheduling plan will be affected, and it might need rescheduling. So it is essential to keep that in 

mind. The amount of buffer time should be equivalent between these two cases. This motivated us 

to address stochastic flow shop scheduling problems and add this slack time depending on the 

machine failure rate instead of the other weighted times. According to this approach, the buffer 

time will be more reasonable and adequate. This amount of additional time is significant to avoid 

any disturbances that may occur. 

 

Many factors might change the expected processing times over and make the uncertainty cases 

exist. One of these factors is the failure of machines. Since the machines are a crucial factor in 

determining execution time in flow shop scheduling, it is natural that the consumption of these 

machines over time will affect computation time. If the machines have high reliability, then the 

actual processing time will be approximately equal to the expected one. In other words, there is no 

difference between the expected processing time and the actual one. If not, then the actual 

processing time will be different from the expected one. Although adding buffer time will increase 

the completion time of the mission and never decrease it, adding this buffer time according to the 

machine's reliability leads to more robust and reliable scheduling than adding a fixed buffer time 

or just considering the processing time as a stochastic variable. Thus, adding a short buffer time 

when the reliability of the machine or the system is high is logical and practical, and vice versa. To 

our best knowledge, consideration of the machine failure rate was not thoroughly addressed. 

 

It is well known, the change in the processing times and breakdowns are the most frequently 

parameters studied under uncertainty case. Most of the proposed methods to minimize the 

makespan of the permutation flow shop scheduling problems considered that all machines in the 

system have the same efficiency during all the executing time and neglect the consumption of these 

machines before the mission begins. In other words, no failure or consumption might happen in the 

machines while executing the operations. Thus, it makes sense to take into account the consumption 

of machines during the scheduling. In this paper, stochastic processing times and machines failure 

rate parameters are considered to obtain robust and reliable scheduling. Reliability concepts are the 

best way to represent uncertainty or consumption in scheduling. From this motivation, considering 

the reliability concepts in scheduling is essential. The advantage of adding buffer time depending 

on the status of the machines is an immunization for the mission to overcome the disturbances. 

 

Let ℛj = 𝑃𝑟(Tj > t)  be the reliability function corresponding to the machine j, with random 

variable 𝑇𝑗 ∈ 𝑅+  represent the time of the machine j spends in executing operations since its 

inception, i.e., lifetime. So that: 

𝐹𝑗(𝑡) = 1 − ℛ𝑗(𝑡)                                                                                                                          (3) 

 

where 𝐹𝑗 is the probability of failure corresponding to the machine j 
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In this paper, Tj  supposed to follow the exponential distribution, That is: 

ℛ𝑗(𝑡) = 𝑒−𝜆𝑗𝑡                                                                                                                                 (4) 

 

where 𝜆𝑗 represents the failure rate of the machine j and t is the time spent executing all the previous 

operations on the machine j. Two robust approaches to estimate the expected makespan are 

proposed in the following subsections. 

 

4.1 Robust Expected Makespan Using the Reliability of the System 
It is well known that the status of the machines at manufacturing systems affects the processing 

times and thence the completion time of the production. This effect will increase the makespan. 

The ratio of this increase will be according to the status of this system. For instance, if the system 

is in perfect status, the increase will be minimal and vice-versa. The most famous mathematical 

concept that describes the status of a system is the reliability theory. In this paper, to compute the 

proper slack time, the reliability theory is used to add the buffer time to each operation in the system 

in order to the expected makespan. The machines in the permutation flow shop system are 

configured as a series. Then, the reliability of the system given by 

ℛ𝑠𝑦𝑠(𝑡) = ∏ ℛ𝑗(𝑡)𝑚
𝑗=1                                                                                                                    (5) 

 

Equation 5 leads to the probability of failure for system  𝐹𝑠𝑦𝑠(𝑡) = 1 − ℛ𝑠𝑦𝑠(𝑡) of the random 

variable 𝑇 ⊂ 𝑅+. 

 

Proposition 1 
Let Pij be the operation processing time of job Ji, i = 1,...,n in permutation flow shop system with 

Mj machines j=1,...,m. Let Fsys be the probability of failure for the system, where the random 

variable  𝑇 ∈ 𝑅+ represents the last time that the system spent it in executing previous operations. 

Then the buffer time corresponding to the operation Oij is as follow: 

𝐻𝑖𝑗(𝑡) = 𝑃𝑖𝑗  𝐹𝑠𝑦𝑠(𝑡)        ∀ (𝑖 = 1, … , 𝑛 , 𝑗 = 1, … , 𝑚)                                                                  (6) 

 

And the robust schedule will be according to the processing time 𝑃𝑖𝑗
∗ (𝑡), 

𝑃𝑖𝑗
∗ (𝑡) = 𝑃𝑖𝑗 + 𝐻𝑖𝑗(𝑡)                                                                                                                     (7) 

 

Now, the 𝑃𝑖𝑗
∗  (𝑡) of the operation Oij is a function of system consumption. Increasing the processing 

time will be according to the time t which the system spent proceeding with other operations before 

the mission starts. One of the axiomatic properties in reliability is that the probability of failure for 

machine/system increases when t increases. According to Eq.6, the buffer time also will relatively 

increase. This property is one of the benefits of including reliability concepts in robust scheduling. 

The reliability will give reasonable buffer time according to machine/system consumption 

compared to only adding fixed time. 

 

4.2 Robust Expected Makespan Using the Reliability of each Machine 
Although the probability of failure for the system comes from the probability of failure for each 

machine in the system, the computing of the buffer times for all operations in all machines 

according to this system failure probability is sometimes inappropriate. Precisely, if some machines 

in the system have a perfect status and the processing times of the operations that will be executed 

in these machines is long, then the buffer time of these operations may be redundant and lead to 

increasing the cost of scheduling. Besides, the procedure assumed that the last executing times for 
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all machines are the same. For these reasons, a second procedure is proposed to be more accurate 

when constructing a robust expected makespan and keeping the cost at a reasonable limit. In this 

procedure, the buffer time of each operation will be added correspondingly to each machine. 

 

Proposition 2 
Let Pij be the operation processing time of job Ji, i=1,..., n in permutation flow shop system with Mj 

machines j=1,..., m. Let Fj be the probability of failure corresponding to machine j, where the 

random variable 𝑇𝑗 ∈ 𝑅+  represents the last time that the machine j spent executing previous 

operations. Then the buffer time for all operations corresponding to machine j is: 

𝐻𝑖𝑗(𝑡𝑗) = 𝑃𝑖𝑗  𝐹𝑗(𝑡𝑗)  ∀ (𝑖 = 1, … , 𝑛 , 𝑗 = 1, … , 𝑚)                                                                        (8) 

 

And the robust schedule will be according to the processing times  𝑃𝑖𝑗
∗ (𝑡𝑗), 

𝑃𝑖𝑗
∗ (𝑡𝑗) = 𝑃𝑖𝑗 + 𝐻𝑖𝑗(𝑡𝑗) ∀ (𝑖 = 1, … , 𝑛)                                                                                         (9) 

 

According to Proposition 2 above, the robust scheduling will correspond to each machine's 

reliability and last executing time. All the results in section 5 below were obtained by assuming 

that the time is equal to 1000 units of time and the discussion of when this time change will be 

presented in the subsection 5.1. 

 

5. Computational Experiments 
To evaluate the performance of the proposed methods, computational simulations are carried out 

with some well-studied problems taken from the OR-Library. In this paper, 29 problems with 

different sizes of jobs and machines from two classes of PFSSP test problems are selected. The first 

eight problems are instances Car1, Car2 through to Car8 designed by Carlier (1978). The second 

21 problems are instances Rec01, Rec03 through to Rec41 designed by Reeves (1995). These 

problems set comprise 21 test instances in seven combinations, ranging from 20 jobs with five 

machines to 75 jobs with 20 machines. For each size of a problem, three instances are provided. 

NEH heuristic is employed to find the makespan for all problems. One of the most common and 

important measure criteria used in industry is the makespan (Framinan et al., 2004). 

 

The expected makespan found by Liu et al. (2011) for Car and Rec problems normally distributed, 

and (Gourgand et al., 2003) for Car and Rec exponentially distributed are compared with the 

proposed methods. Before comparison, the performance of the proposed methods must be 

validated. The validation is done by verifying the makespan obtained by NEH with the expected 

makespan of problems generated randomly. The processing time 𝑃𝑖𝑗
∗  for each operation Oij in the 

problems Car and Rec are randomly generated from the Normal distribution 

𝑃𝑖𝑗
∗ (𝑡)~ 𝑁 (𝑃𝑖𝑗 + 𝐻𝑖𝑗(𝑡) ,

1

 10
(𝑃𝑖𝑗 + 𝐻𝑖𝑗(𝑡)))                                                                               (10) 

 

And from Exponential distribution 

𝑃𝑖𝑗
∗ (𝑡)~ 𝐸𝑋𝑃(𝑃𝑖𝑗 + 𝐻𝑖𝑗(𝑡) )                                                                                                         (11) 

 

where H is defined in Eqs.6 and 8. According to Eqs.5, we have 𝜆𝑠𝑦𝑠 = ∑ 𝜆𝑗∀ 𝑗∈𝑚  . In this study 

we supposed 𝜆𝑗 = 0.00005    ∀ 𝑗 ∈ 𝑚. For the simulation model, 10,000 replications have run to 

have a very good estimation of the expected makespan. The makespan in the result tables obtained 

by NEH heuristic for different considerations indicated by the following notations: 

NEH is the makespan for deterministic data; 
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E(Cmax) is the Expected makespan obtained by simulation with no reliability concept. 

E(Cmax)1 is the Expected makespan computed by Liu et al. (2011). 

E(Cmax)2 is the Expected makespan computed by Gourgand et al. (2003). 

E(CmaxSys1) is the Expected makespan computed by adding the ratio of system failure rate to each 

operation for the simulated data. 

E(CmaxSys2) is the Expected makespan obtained by the simulation resulting from combining the 

distribution parameters with the ratio of system failure rate. 

E(CmaxMac1) is the Expected makespan computed by adding the ratio of machine failure rate to the 

corresponding operation for the simulated data. 

E(CmaxMac2) is the Expected makespan obtained by the simulation resulting from combining the 

distribution parameters with the ratio of the corresponding machine failure rate. 

 
Table 1. Computational results for car problems normally distributed. 

 

Problems Information 

NEH E(cmax) E(cmax)1 

System reliability Machine reliability 

Name Size 
E(CmaxSys1) 

 

E(CmaxSys2) 

 

E(CmaxMac1) 

 

E(CmaxMac2) 

 

Car1 11x5 7038 7036.17 7152.73 8592.56 8593.72 7379.32 7379.97 

Car2 13x4 7376 7372.18 7534.52 8708.53 8711.51 7731.72 7733.04 

Car3 12x5 7399 7399.92 7543.52 9036.70 9036.85 7760.75 7760.81 

Car4 14x4 8129 8072.67 8270.02 9546.31 9549.82 8468.00 8469.14 

Car5 10x6 7835 7842.13 7946.51 9875.71 9873.41 8224.73 8223.97 

Car6 8x9 8773 8770.76 8893.55 11949.0 11950.3 9198.52 9198.80 

Car7 7x7 6590 6598.07 6702.77 8546.56 8542.03 6919.86 6918.97 

Car8 8x8 8564 8498.57 8694.23 11300.3 11315.2 8913.05 8916.89 

 

Table 1 and Table 3 show the makespan obtained by NEH directly from the original data and the 

expected makespan obtained by E(Cmax) and E(Cmax)1. The expected makespan obtained by the 

proposed methods is more robust and reliable than the one computed by Liu et al. (2011). This is 

because the increase in the expected makespan gives more reasonable scheduling than the one 

obtained by Liu et al. (2011) regarding the big numbers of the original data, thence the makespan. 

The expected makespan found by system reliability is greater than the expected makespan found 

by machine reliability. This is because the robust scheduling using the reliability for each machine 

is more sensitive than the system reliability. In the other words, the buffer time will add to each 

operation according to the status of its machine, while in the system reliability, the buffer time of 

all the operations will be according to the reliability of the system as a whole, which certainly has 

a higher failure rate than each machine separately. 

 
Table 2. Computational results for car problems exponentially distributed. 

 

Problems Information 

NEH E(cmax) E(cmax)2 

System reliability Machine reliability 

Name Size E(CmaxSys1) 
E(CmaxSys2) 

 

E(CmaxMac1) 

 

E(CmaxMac2) 

 

Car1 11x5 7038 8288.639 11341.1 10121.983 10118.079 8692.746 8690.618 

Car2 13x4 7376 8544.288 11076.0 10093.233 10106.948 8961.058 8974.561 

Car3 12x5 7399 8941.461 12893.7 10919.291 10903.841 9377.612 9367.716 

Car4 14x4 8129 9251.672 12671.6 10928.824 10921.555 9702.795 9693.147 

Car5 10x6 7835 9201.599 12098.6 11586.219 11586.687 9650.215 9642.871 

Car6 8x9 8773 10376.27 14417.4 14136.230 14133.150 10882.22 10888.76 

Car7 7x7 6590 8092.151 10613.1 10481.868 10469.303 8486.809 8480.003 

Car8 8x8 8564 9798.224 13081.6 13028.314 13040.827 10276.090 10269.80 
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Table 3. Computational results for rec problems normally distributed. 
 

Problems Information 
NEH E(cmax) E(cmax)1 

System reliability Machine reliability 

Name Size E(CmaxSys1) E(CmaxSys2) E(CmaxMac1) E(CmaxMac2) 

Rec01 20x05   1320 1303.48 1340.82 1591.46 1592.00 1367.05 1367.07 

Rec03  20x05 1116   1129.15   1133.02 1378.67 1378.27 1184.11 1183.97 

Rec05   20x05 1296 1280.18 1315.80 1563.38 1563.36 1342.59 1342.46 

Rec07  20x10 1626 1635.22 1645.89 2278.65 2277.35 1714.97 1714.75 

Rec09 20x10   1583 1585.28 1602.40 2209.06 2206.96 1662.64 1662.62 

Rec11 20x10   1550 1529.19 1569.91 2130.38 2132.78 1603.64 1604.54 

Rec13  20x15   2002   2000.37   2025.90 3055.89   3059.64 2097.94 2098.67 

Rec15  20x15   2025 2041.45   2045.59 3118.71 3116.09 2141.08 2140.94 

Rec17   20x15 2019 2014.72 2044.40 3077.95 3074.41 2113.05 2112.76 

Rec19 30x10   2185   2190.48 * 3052.85 3050.03   2297.38 2297.19 

Rec21  30x10   2131 2102.17   * 2927.93 2929.75   2204.50 2205.19 

Rec23 30x10   2110 2126.46 * 2962.26 2960.75 2229.80 2229.81 

Rec25  30x15 2644 2657.85 * 4059.89 4061.62   2787.50 2788.27 

Rec27 30x15 2505 2514.67 * 3841.35 3840.14 2637.39 2637.75 

Rec29 30x15 2391 2400.98 * 3667.96   3658.95   2518.10 2516.68 

Rec31 50x10    3171 3205.61   * 4466.69 4465.17 3361.77 3362.00 

Rec33  50x10 3241   3206.42 * 4468.05   4468.42 3362.58 3362.24 

Rec35   50x10 3313 3318.62 * 4625.08 4625.61 3480.35 3480.34 

Rec37    75x20 5284 5254.62   * 8576.14   8574.80 5510.91 5510.90 

Rec39   75x20 5299   5351.21 *   8734.75 8734.28 5613.13 5612.67 

Rec41    75x20 5242   5270.99   * 8602.84   8599.02 5527.82 5527.95 

(*) No results found in Liu et al. (2011) 

 

 
Table 4. Computational results for rec problems exponentially distributed. 

 

Problems Information 
NEH E(cmax) E(cmax)2 

System reliability Machine reliability 

Name Size E(CmaxSys1) E(CmaxSys2) E(CmaxMac1) E(CmaxMac2) 

Rec01 20x05 1320 1731.66 2018.2 2412.96 2419.43 1816.04 1817.00 

Rec03 20x05 1116 1297.59 1641.7 1584.65 1588.99 1360.92 1359.32 

Rec05 20x05 1296 1429.61 1915.0 1745.81 1744.46 1499.27 1497.75 

Rec07 20x10 1626 1873.43 2603.6 2610.81 2615.65 1964.66 1970.31 

Rec09 20x10 1583 1804.93 * 2515.14 2509.74 1893.13 1893.81 

Rec11 20x10 1550 1731.66 * 2412.96 2419.43 1816.04 1817.00 

Rec13 20x15 2002 2378.54 3448.4 3633.66 3637.76 2494.79 2495.75 

Rec15 20x15 2025 2359.74 * 3604.97 3603.62 2474.71 2477.20 

Rec17 20x15 2019 2329.46 * 3558.61 3564.70 2443.02 2442.52 

Rec19 30x10 2185 2467.79 3416.3 3438.68 3434.31 2588.50 2582.54 

Rec21 30x10 2131 2369.07 * 3301.02 3299.54 2484.83 2484.09 

Rec23 30x10 2110 2368.89 * 3301.04 3304.65 2484.16 2486.31 

Rec25 30x15 2644 3022.59 4387.9 4617.22 4611.40 3170.21 3169.54 

Rec27 30x15 2505 2880.62 * 4400.91 4399.47 3021.55 3021.10 

Rec29 30x15 2391 2789.04 * 4260.46 4260.51 2925.05 2926.45 

Rec31 50x10 3171 3489.52 5034.0 4862.44 4869.15 3659.47 3661.19 

Rec33 50x10 3241 3539.08 * 4932.11 4934.33 3711.52 3714.98 

Rec35 50x10 3313 3570.47 * 4975.30 4978.64 3744.60 3743.83 

Rec37 75x20 5284 5796.86 * 9460.80 9470.45 6079.67 6081.59 

Rec39 75x20 5299 5877.13 * 9592.39 9597.73 6163.38 6166.51 

Rec41 75x20 5242 5849.38 8762.2 9546.42 9538.88 6135.28 6136.07 

(*) No results found in Gourgand et al. (2003) 

 

Table 2 and Table 4 show the differences between the makespan obtained by NEH and the expected 

makespan obtained by E(Cmax) and E(Cmax)2. This difference is due to the nature of data which are 

exponentially distributed. These data have a higher mean comparing with the normal distribution 

one. The robust makespan E(CmaxSys1) and E(CmaxMac1) for processing time exponential 
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distributed obtaining according to propositions 1 and 2, are also verified by E(CmaxSys2) and 

E(CmaxMac2), receptively. It is seen that the suggested method can obtain good results. 

 

5.1 Case Study (Car2) 
The expected makespan for Car2 instance is computed by NEH heuristic for 1000 replications 

generated twice. The first from Normal distribution so that  𝑃𝑖𝑗
∗ (𝑡)~ 𝑁 (𝑃𝑖𝑗 ,

1

 10
𝑃𝑖𝑗), the second 

from Exponential distribution so that 𝑃𝑖𝑗
∗ (𝑡)~ 𝐸𝑋𝑃(𝑃𝑖𝑗  ). The interval [0,10k] indicates how many 

time units (hours, for example) that the machines work before starting to perform this scheduling, 

in other words, the last executing times of the machines. In Figure 1 and Figure 2 below, the blue 

line represents the expected makespan for different last executing times of all system (system 

reliability). The orange line represents the expected makespan for the same problem (Car2) for 

different last executing times for each machine in the system (machine reliability). The green line 

represents the expected makespan for the same problem used in the two previous cases for different 

last executing times just for one machine. In this case study, the last executing time for machine 3 

is changed. These changes are used in the two distributions: Normal and Exponential. 

 

 
 

Figure 1. The Expected makespan of the system with the interval [0,10k] that indicates the last lifetime of 

the system/machines spent before executing the Car2 problem. In this figure 𝑷𝒊𝒋
∗ (𝒕)~ 𝑵 (𝑷𝒊𝒋 ,

𝟏

 𝟏𝟎
𝑷𝒊𝒋). The 

blue line represents the Expected makespan computed according to the robust procedure in Proposition 1 

and the orange one is devoted to illustrating the robust procedure in Proposition 2 applied to all machines in 

the system, while the green line is devoted to machine 3 in the system. 

 

 

Observing the behavior in Figure 1 and Figure 2 above, the general behavior of the expected 

makespan concerning the consumption of machines of systems or machines for the two 

distributions is the same and is sensitive to the consumption of machines, even in one machine. The 

expected makespan resulted from instances generated exponentially is bigger than Normal. This is 

because of the behavior of exponential distribution which is always affected by time. In the two 

cases considered, the expected makespan based on the reliability system has a huge added buffer 

time, more than the machine reliability. This is justifiable because the scale parameter of the system 
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reliability combines all the scales of the machines. i.e., 𝜆𝑠𝑦𝑠 = ∑ 𝜆𝑗∀ 𝑗∈𝑚 , which makes the 

decreasing failure rate relatively slow which, in turn, leads to an increase in the added buffer time. 

The drop at the beginning of the curve in the green line is normal because the new scheduling by 

NEH is implemented for each one in the 10000 replications generated. 

 

 
 

Figure 2. The Expected makespan of the system with the interval [0,10k] that indicates the last lifetime of 

the system/machines spent before executing the Car2 problem. In this figure 𝑷𝒊𝒋
∗ (𝒕)~ 𝑬𝑿𝑷(𝑷𝒊𝒋 ). The blue 

line represents the Expected makespan computed according to the robust procedure in Proposition 1 and the 

orange one is devoted to illustrating the robust procedure in Proposition 2 applied to all machines in the 

system, while the green line is devoted to machine 3 in the system. 

 

 

6. Conclusions 
The proposed expected makespan for PFSSP considers the uncertain situations, which is the 

variation in processing times and the machine failure rate. This paper introduces a new mechanism 

for estimating a robust and reliable expected makespan for two distributions. The solutions obtained 

by these approaches are more reliable than traditional ones. Buffer time between jobs depending 

on the machine failure rate is added to overcome the variation in the processing times and the 

stalling machines during the mission performance. The robust and reliable expected makespan is 

obtained for stochastic flow shop scheduling problems by considering these two factors 

simultaneously. The proposed approaches are tested and validated through problems from the OR-

Library. The computational results show that the proposed robust approach have promising results 

compared to the results obtained by Liu et al. (2011) and Gourgand et al. (2003). 

 

Several observations are noted to be taken into account in future works. The first is to implement a 

multi-criterion analysis mechanism to consider bi-objective or multi-objective problems. The 

second is to combine the metaheuristics to minimize the makespan under uncertain circumstances. 

It also investigates the machine's reliability and effectiveness on the job shop scheduling problems 

for future research. 
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