1932

Abstract

Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-042722-091052
2022-09-08
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-042722-091052.html?itemId=/content/journals/10.1146/annurev-micro-042722-091052&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguilar C, Vlamakis H, Losick R, Kolter R. 2007. Thinking about Bacillus subtilis as a multicellular organism. Curr. Opin. Microbiol. 10:638–43
    [Google Scholar]
  2. 2.
    Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE. 2018. Interaction between Staphylococcus aureus and Pseudomonasaeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog. Dis. 76:fty003
    [Google Scholar]
  3. 3.
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT et al. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 552:98–101
    [Google Scholar]
  4. 4.
    Appleby CA. 1984. Leghemoglobin and rhizobium respiration. Annu. Rev. Plant Physiol. 35:443–78
    [Google Scholar]
  5. 5.
    Armbruster CR, Wolter DJ, Mishra M, Hayden HS, Radey MC et al. 2016. Staphylococcus aureus protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa. mBio 7:e00538–16
    [Google Scholar]
  6. 6.
    Artz JH, Zadvornyy OA, Mulder DW, King PW, Peters JW. 2017. Structural characterization of poised states in the oxygen sensitive hydrogenases and nitrogenases. Methods Enzymol 595:213–59
    [Google Scholar]
  7. 7.
    Askarian F, Wagner T, Johannessen M, Nizet V. 2018. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol. Rev. 42:656–71
    [Google Scholar]
  8. 8.
    Avenhaus U, Cabeza RA, Liese R, Lingner A, Dittert K et al. 2016. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration. Front. Plant Sci. 6:1133
    [Google Scholar]
  9. 9.
    Baldan R, Cigana C, Testa F, Bianconi I, De Simone M et al. 2014. Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLOS ONE 9:e89614
    [Google Scholar]
  10. 10.
    Bassler BL, Losick R. 2006. Bacterially speaking. Cell 125:237–46
    [Google Scholar]
  11. 11.
    Begum AA, Leibovitch S, Migner P, Zhang F. 2001. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J. Exp. Bot. 52:1537–43
    [Google Scholar]
  12. 12.
    Beyersmann PG, Tomasch J, Son K, Stocker R, Göker M et al. 2017. Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens. Sci. Rep. 7:730
    [Google Scholar]
  13. 13.
    Bragonzi A, Wiehlmann L, Klockgether J, Cramer N, Worlitzsch D et al. 2006. Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152:3261–69
    [Google Scholar]
  14. 14.
    Bramucci AR, Case RJ. 2019. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi. Sci. Rep. 9:5215
    [Google Scholar]
  15. 15.
    Brencic A, Winans SC. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69:155–94
    [Google Scholar]
  16. 16.
    Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M. 2004. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol. 70:2560–65
    [Google Scholar]
  17. 17.
    Brinkhoff T, Giebel H-A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch. Microbiol. 189:531–39
    [Google Scholar]
  18. 18.
    Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. PNAS 109:13859–64
    [Google Scholar]
  19. 19.
    Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J et al. 2005. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl. Environ. Microbiol. 71:7263–70
    [Google Scholar]
  20. 20.
    Buchan A, González JM, Moran MA. 2005. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71:5665–77
    [Google Scholar]
  21. 21.
    Buhian WP, Bensmihen S. 2018. Mini-review: Nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Front. Plant Sci. 9:1247
    [Google Scholar]
  22. 22.
    Capdevila-Cortada M. 2019. Electrifying the Haber-Bosch process. Nat. Cat. 2:1055
    [Google Scholar]
  23. 23.
    Chekabab SM, Silverman RJ, Lafayette SL, Luo Y, Rousseau S, Nguyen D. 2015. Staphylococcus aureus inhibits IL-8 responses induced by Pseudomonas aeruginosa in airway epithelial cells. PLOS ONE 10:e0137753
    [Google Scholar]
  24. 24.
    Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I et al. 2002. Structural identification of a bacterial quorum sensing signal containing boron. Nature 415:545–49
    [Google Scholar]
  25. 25.
    Chew SC, Kundukad B, Seviour T, van der Maarel JRC, Yang L et al. 2014. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio 5:e01536–14
    [Google Scholar]
  26. 26.
    Clardy J, Walsh C. 2004. Lessons from natural molecules. Nature 432:829–37
    [Google Scholar]
  27. 27.
    Clarke SR, Foster SJ. 2006. Surface adhesins of Staphylococcus aureus. Adv. Microb. Physiol. 51:187–224
    [Google Scholar]
  28. 28.
    Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ et al. 2010. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLOS ONE 5:e11044
    [Google Scholar]
  29. 29.
    Curtis TP, Sloan WT, Scannell JW. 2002. Estimating prokaryotic diversity and its limits. PNAS 99:10494–99
    [Google Scholar]
  30. 30.
    Debellé F, Mou L, Mangin B, Dénarié J, Boivin C. 2001. nod genes and Nod signals and the evolution of the rhizobium legume symbiosis. Acta Biochim. Pol. 48:359–66
    [Google Scholar]
  31. 31.
    Delwiche CF, Graham LE, Thomson N. 1989. Lignin-like compounds and sporopollen in Coleochaete, an algal model for land plant ancestry. Science 245:399–401
    [Google Scholar]
  32. 32.
    Dittmann KK, Sonnenschein EC, Egan S, Gram L, Bentzon-Tilia M. 2019. Impact of Phaeobacter inhibens on marine eukaryote-associated microbial communities. Environ. Microbiol. Rep. 11:401–13
    [Google Scholar]
  33. 33.
    Espiñeira JM, Novo Uzal E, Gómez Ros LV, Carrión JS, Merino F et al. 2011. Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68
    [Google Scholar]
  34. 34.
    Faith JJ, Rey FE, O'Donnell D, Karlsson M, McNulty NP et al. 2010. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 4:1094–98
    [Google Scholar]
  35. 35.
    Farkas A, Maróti G, Dürgo H, Györgypál Z, Lima RM et al. 2014. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. PNAS 111:5183–88
    [Google Scholar]
  36. 36.
    Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel AA et al. 1988. Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal. J. Bacteriol. 170:5489–99
    [Google Scholar]
  37. 37.
    Ferrer JL, Austin MB, Stewart C, Noel JP. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46:356–70
    [Google Scholar]
  38. 38.
    Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR et al. 2015. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. 197:2252–64
    [Google Scholar]
  39. 39.
    Firmin JL, Wilson KE, Rossen L, Johnston AWB. 1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324:90–92
    [Google Scholar]
  40. 40.
    Fischbach MA, Segre JA. 2016. Signaling in host-associated microbial communities. Cell 164:1288–300
    [Google Scholar]
  41. 41.
    Geng H, Belas R. 2010. Molecular mechanisms underlying roseobacter-phytoplankton symbioses. Curr. Opin. Biotechnol. 21:332–38
    [Google Scholar]
  42. 42.
    Geng H, Bruhn JB, Nielsen KF, Gram L, Belas R. 2008. Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl. Environ. Microbiol. 74:1535–45
    [Google Scholar]
  43. 43.
    Glenn SA, Gurich N, Feeney MA, González JE. 2007. The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. J. Bacteriol. 189:7077
    [Google Scholar]
  44. 44.
    Gonźalez JM, Kiene RP, Moran MA. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65:3810–19
    [Google Scholar]
  45. 45.
    Gonźalez JM, Simó R, Massana R, Covert JS, Casamayor EO et al. 2000. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl. Environ. Microbiol. 66:4237–46
    [Google Scholar]
  46. 46.
    Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T. 2012. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17:495–502
    [Google Scholar]
  47. 47.
    Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S et al. 2013. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. FEMS Microbiol. Rev. 37:364–83
    [Google Scholar]
  48. 48.
    Haag AF, Kerscher B, Dall'Angelo S, Sani M, Longhi R et al. 2012. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J. Biol. Chem. 287:10791–98
    [Google Scholar]
  49. 49.
    Hartwig UA, Maxwell CA, Joseph CM, Phillips DA. 1990. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172:2769–73
    [Google Scholar]
  50. 50.
    Heim CE, Bosch ME, Yamada KJ, Aldrich AL, Chaudhari SS et al. 2020. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 5:1271–84
    [Google Scholar]
  51. 51.
    Holligan PM, Fernández E, Aiken J, Balch WM, Boyd P et al. 1993. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles 7:879–900
    [Google Scholar]
  52. 52.
    Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M. 1983. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–42
    [Google Scholar]
  53. 53.
    Horvath B, Domonkos A, Kereszt A, Szucs A, Abraham E et al. 2015. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. PNAS 112:15232–37
    [Google Scholar]
  54. 54.
    Hubert D, Réglier-Poupet H, Sermet-Gaudelus I, Ferroni A, Le Bourgeois M et al. 2013. Association between Staphylococcus aureus alone or combined with Pseudomonas aeruginosa and the clinical condition of patients with cystic fibrosis. J. Cyst. Fibros. 12:497–503
    [Google Scholar]
  55. 55.
    Hum. Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  56. 56.
    Jones KM. 2012. Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J. Bacteriol. 194:4322–31
    [Google Scholar]
  57. 57.
    Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B et al. 2009. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J. Bacteriol. 191:4002–14
    [Google Scholar]
  58. 58.
    Kereszt A, Mergaert P, Montiel J, Endre G, Kondorosi É. 2018. Impact of plant peptides on symbiotic nodule development and functioning. Front. Plant Sci. 9:1026
    [Google Scholar]
  59. 59.
    Kevei Z, Vinardell JM, Kiss GB, Kondorosi A, Kondorosi É. 2002. Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in Medicago spp. Mol. Plant-Microbe Interact. 15:922–31
    [Google Scholar]
  60. 60.
    Kolter R. 2021. The history of microbiology—a personal interpretation. Annu. Rev. Microbiol. 75:1–17
    [Google Scholar]
  61. 61.
    Laporte P, Satiat-Jeunemaître B, Velasco I, Csorba T, Van De Velde W et al. 2010. A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis. Plant J 62:24–38
    [Google Scholar]
  62. 62.
    Limoli DH, Hoffman LR. 2019. Help, hinder, hide and harm: What can we learn from the interactions between Pseudomonas aeruginosa and Staphylococcus aureus during respiratory infections?. Thorax 74:684–92
    [Google Scholar]
  63. 63.
    Limoli DH, Whitfield GB, Kitao T, Ivey ML, Davis MR Jr. et al. 2017. Pseudomonas aeruginosa alginate overproduction promotes coexistence with Staphylococcus aureus in a model of cystic fibrosis respiratory infection. mBio 8:e00186–17
    [Google Scholar]
  64. 64.
    Lyons NA, Kolter R. 2015. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24:21–28
    [Google Scholar]
  65. 65.
    Machado H, Sonnenschein EC, Melchiorsen J, Gram L. 2015. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genom 16:158
    [Google Scholar]
  66. 66.
    Maróti G, Kereszt A, Kondorosi É, Mergaert P. 2011. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 162:363–74
    [Google Scholar]
  67. 67.
    Maróti G, Kondorosi É. 2014. Nitrogen-fixing Rhizobium-legume symbiosis: Are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?. Front. Microbiol. 5:326
    [Google Scholar]
  68. 68.
    Martone PT, Estevez JM, Lu F, Ruel K, Denny MW et al. 2009. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 19:169–75
    [Google Scholar]
  69. 69.
    Mashburn LM, Jett AM, Akins DR, Whiteley M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187:554–66
    [Google Scholar]
  70. 70.
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  71. 71.
    Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. 2004. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl. Environ. Microbiol. 70:4692–701
    [Google Scholar]
  72. 72.
    Montiel J, Szucs A, Boboescu IZ, Gherman VD, Kondorosi É, Kereszt A. 2016. Terminal bacteroid differentiation is associated with variable morphological changes in legume species belonging to the inverted repeat-lacking clade. Mol. Plant-Microbe Interact. 29:210–19
    [Google Scholar]
  73. 73.
    Moran MA, Miller WL. 2007. Resourceful heterotrophs make the most of light in the coastal ocean. Nat. Rev. Microbiol. 5:792–800
    [Google Scholar]
  74. 74.
    Mou X, Sun S, Edwards RA, Hodson RE, Moran MA. 2008. Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–11
    [Google Scholar]
  75. 75.
    Mulcahy ME, McLoughlin RM. 2016. Host-bacterial crosstalk determines Staphylococcus aureus nasal colonization. Trends Microbiol 24:872–86
    [Google Scholar]
  76. 76.
    Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6:173–82
    [Google Scholar]
  77. 77.
    Newman DJ, Cragg CM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83:770–803
    [Google Scholar]
  78. 78.
    Nguyen AT, Jones JW, Ruge MA, Kane MA, Oglesby-Sherrouse AG. 2015. Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa. J. Bacteriol. 197:2265–75
    [Google Scholar]
  79. 79.
    Niemietz CM, Tyerman SD. 2000. Channel-mediated permeation of ammonia gas through the peri-bacteroid membrane of soybean nodules. FEBS Lett 465:110–14
    [Google Scholar]
  80. 80.
    Noto MJ, Burns WJ, Beavers WN, Skaar EP. 2017. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J. Bacteriol. 199:e00221–17
    [Google Scholar]
  81. 81.
    Oldroyd GE, Downie JA. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59:519–46
    [Google Scholar]
  82. 82.
    Park J-D, Li Y, Moon K, Han E, Lee S et al. 2022. Structural elucidation of cryptic algaecides in marine algal-bacterial symbioses by NMR spectroscopy and microED. Angew. Chem. Int. Ed 61:e202114022
    [Google Scholar]
  83. 83.
    Parrow NL, Fleming RE, Minnick MF. 2013. Sequestration and scavenging of iron in infection. Infect. Immun. 81:3503–14
    [Google Scholar]
  84. 84.
    Peck MC, Fisher RF, Long SR. 2006. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J. Bacteriol. 188:5417–27
    [Google Scholar]
  85. 85.
    Perret X, Staehelin C, Broughton WJ. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64:180–201
    [Google Scholar]
  86. 86.
    Piel J. 2009. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26:338–62
    [Google Scholar]
  87. 87.
    Pillarisetti N, Williamson E, Linnane B, Skoric B, Robertson CF et al. 2011. Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 184:75–81
    [Google Scholar]
  88. 88.
    Price CE, Brown DG, Limoli DH, Phelan VV, O'Toole GA. 2020. Exogenous alginate protects Staphylococcus aureus from killing by Pseudomonas aeruginosa. J. Bacteriol. 202:e00559–19
    [Google Scholar]
  89. 89.
    Prince A. 1992. Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract. Microb. Pathog. 13:251–60
    [Google Scholar]
  90. 90.
    Raghuvanshi R, Vasco K, Vázquez-Baeza Y, Jiang L, Morton JT et al. 2020. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems 5:e00292–20
    [Google Scholar]
  91. 91.
    Ramadhar TR, Beemelmanns C, Clardy J. 2014. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. J. Antibiot. 63:53–58
    [Google Scholar]
  92. 92.
    Rosenfeld M, Emerson J, McNamara S, Thompson V, Ramsey BW et al. 2012. Risk factors for age at initial Pseudomonas acquisition in the cystic fibrosis epic observational cohort. J. Cyst. Fibros. 11:446–53
    [Google Scholar]
  93. 93.
    Rowe SM, Miller S, Sorscher EJ. 2005. Cystic fibrosis. N. Engl. J. Med. 352:1992–2001
    [Google Scholar]
  94. 94.
    Sabine CL, Feely RA, Gruber N, Key RM, Lee K et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71
    [Google Scholar]
  95. 95.
    Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ et al. 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454:595–99
    [Google Scholar]
  96. 96.
    Schmidt PE, Broughton WJ, Werner D. 1994. Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol. Plant-Microbe Interact. 7:384–90
    [Google Scholar]
  97. 97.
    Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C et al. 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 5:e17473
    [Google Scholar]
  98. 98.
    Seyedsayamdost MR, Carr G, Kolter R, Clardy J. 2011. Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J. Am. Chem. Soc. 133:18343–49
    [Google Scholar]
  99. 99.
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3:331–35
    [Google Scholar]
  100. 100.
    Seyedsayamdost MR, Wang R, Kolter R, Clardy J. 2014. Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. J. Am. Chem. Soc. 136:15150–53
    [Google Scholar]
  101. 101.
    Seymour JR, Simó R, Ahmed T, Stocker R 2010. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–45
    [Google Scholar]
  102. 102.
    Siegel DA, Franz BA. 2010. Oceanography: century of phytoplankton change. Nature 466:569–70
    [Google Scholar]
  103. 103.
    Sly PD, Brennan S, Gangell C, de Klerk N, Murray C et al. 2009. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am. J. Respir. Crit. Care Med. 180:146–52
    [Google Scholar]
  104. 104.
    Spaink HP, Sheeley DM, Van Brussel AAN, Glushka J, York WS et al. 1991. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–30
    [Google Scholar]
  105. 105.
    Stick SM, Brennan S, Murray C, Douglas T, von Ungern-Sternberg BS et al. 2009. Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J. Pediatr. 155:623–28
    [Google Scholar]
  106. 106.
    Straight PD, Kolter R. 2009. Interspecies chemical communication in bacterial development. Annu. Rev. Microbiol. 63:99–118
    [Google Scholar]
  107. 107.
    Stubbendieck RM, Vargas-Bautista C, Straight PD. 2016. Bacterial communities: interactions to scale. Front. Microbiol. 7:1234
    [Google Scholar]
  108. 108.
    Taylor LP, Grotewold E. 2005. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8:317–23
    [Google Scholar]
  109. 109.
    Thiel V, Brinkhoff T, Dickschat JS, Wickel S, Grunenberg J et al. 2010. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade. Org. Biomol. Chem. 8:234–46
    [Google Scholar]
  110. 110.
    Thierbach S, Birmes FS, Letzel MC, Hennecke U, Fetzner S. 2017. Chemical modification and detoxification of the Pseudomonas aeruginosa toxin 2-heptyl-4-hydroxyquinoline N-oxide by environmental and pathogenic bacteria. ACS Chem. Biol. 12:2305–12
    [Google Scholar]
  111. 111.
    Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T et al. 2012. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 6:2229–44
    [Google Scholar]
  112. 112.
    Tomasz A. 1965. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208:155–59
    [Google Scholar]
  113. 113.
    Tsukada S, Aono T, Akiba N, Lee KB, Liu C-T et al. 2009. Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Appl. Environ. Microbiol. 75:5037–46
    [Google Scholar]
  114. 114.
    Tyerman SD, Whitehead LF, Day DA. 1995. A channel-like transporter for NH4+ on the symbiotic interface of N2-fixing plants. Nature 378:629–32
    [Google Scholar]
  115. 115.
    Van De Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H et al. 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–26
    [Google Scholar]
  116. 116.
    Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I et al. 2010. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME J 4:61–77
    [Google Scholar]
  117. 117.
    Wagner-Döbler I, Biebl H. 2006. Environmental biology of the marine Roseobacter lineage. Annu. Rev. Microbiol. 60:255–80
    [Google Scholar]
  118. 118.
    Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV et al. 2000. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. PNAS 97:13407–12
    [Google Scholar]
  119. 119.
    Wais RJ, Keating DH, Long SR. 2002. Structure-function analysis of Nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiol 129:211–24
    [Google Scholar]
  120. 120.
    Wakeman CA, Moore JL, Noto MJ, Zhang Y, Singleton MD et al. 2016. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat. Commun. 7:11951
    [Google Scholar]
  121. 121.
    Wang H, Tomasch J, Jarek M, Wagner-Döbler I. 2014. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front. Microbiol. 5:311
    [Google Scholar]
  122. 122.
    Wang H, Tomasch J, Michael V, Bhuju S, Jarek M et al. 2015. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum. Front. Microbiol. 6:1262
    [Google Scholar]
  123. 123.
    Wang R, Gallant É, Seyedsayamdost MR. 2016. Investigation of the genetics and biochemistry of roseobacticide production in the Roseobacter clade bacterium Phaeobacter inhibens. mBio 7:e02118–15
    [Google Scholar]
  124. 124.
    Wang R, Gallant É, Wilson MZ, Wu Y, Li A et al. 2021. Algal p-coumaric acid induces oxidative stress and siderophore biosynthesis in the bacterial symbiont Phaeobacter inhibens. Cell Chem. Biol. 29:670–79.e5
    [Google Scholar]
  125. 125.
    Wang R, Seyedsayamdost MR. 2017. Hijacking exogenous signals to generate new secondary metabolites in symbiotic interactions. Nat. Rev. Chem. 1:0021
    [Google Scholar]
  126. 126.
    Wang R, Seyedsayamdost MR. 2017. Roseochelin B, an algaecidal natural product synthesized by the roseobacter Phaeobacter inhibens in response to algal sinapic acid. Org. Lett. 19:5138–41
    [Google Scholar]
  127. 127.
    Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551:313–20
    [Google Scholar]
  128. 128.
    Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M. 2017. The exometabolome of two model strains of the roseobacter group: a marketplace of microbial metabolites. Front. Microbiol. 8:1985
    [Google Scholar]
  129. 129.
    Wiens JR, Vasil AI, Schurr MJ, Vasil ML. 2014. Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. mBio 5:e01010–13
    [Google Scholar]
  130. 130.
    Wilson MZ, Wang R, Gitai Z, Seyedsayamdost MR. 2016. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. PNAS 113:1630–35
    [Google Scholar]
  131. 131.
    Wyatt MA, Wang W, Roux CM, Beasley FC, Heinrichs DE et al. 2010. Staphylococcus aureus nonribosomal peptide secondary metabolites regulate virulence. Science 329:294–96
    [Google Scholar]
  132. 132.
    Zuanazzi JAS, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P. 1998. Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol. Plant-Microbe Interact. 11:784–94
    [Google Scholar]
/content/journals/10.1146/annurev-micro-042722-091052
Loading
/content/journals/10.1146/annurev-micro-042722-091052
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error