Skip to main content
Log in

A new mathematical model considering the multi-protocol label switching and the routing and spectrum allocation problems jointly in elastic optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Elastic Optical Networks (EON) have recently attracts researchers, as one of the most promising technologies for flexibly assign spectrum resources to link requests,and benefits from higher spectral efficiency and system capacity. The spectrum assignment problem is dividing the bandwidth into frequency slices and connecting requests with different capacities using different numbers of frequency slices to transfer data. On the other hand, one of the most important issues in cloud computing is to model the problem as a multilayer optimization problem, which is well-known as Multi-Protocol Label Switching (MPLS). In this paper, the network is considered as a two-layer network in which the physical layer is the optical fiber layer on elastic optical network layer. In elastic optical network (EON), the network spectrum is divided into smaller spectrum slots to improve the spectrum utilization, but the high-quality spectrum division also complicates the routing and spectrum allocation (RSA) problem. In previous researches, RSA has been considered independent from MPLS. In this paper, a new mathematical model for MPLS is introduced in which the optical fiber layer joints with RSA. The objective function is defined as minimizing the total allocation costs. To verify the model, the optimal objective functions of different values of the capacities of modules in both layers are compared. It is shown that the combination of these two problems reduces the total allocation costs for large values of optical slices and could increase it in cases where the number of optical slices is small while the number of modules is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data availability is not applicable to this research. All the data could be created by the explained simulation technique.

References

  1. Liu, S., Guo, Q., Yuan, J., Zhang, Q.: A resource-periodic-arrangement strategy for RMSA problem in elastic optical networks. IEEE Access. 1(8), 159745–55 (2020)

    Article  Google Scholar 

  2. Zhu, R., Li, S., Wang, P., Yuan, J.: Time and spectrum fragmentation-aware virtual optical network embedding in elastic optical networks. Opt. Fiber Technol. 1(54), 102117 (2020)

    Article  Google Scholar 

  3. Brasileiro, Í., Costa, L., Drummond, A.: A survey on challenges of Spatial Division Multiplexing enabled elastic optical networks. Opt. Switching Netw. 1(38), 100584 (2020)

    Article  Google Scholar 

  4. Savva, G., Manousakis, K., Ellinas, G.: Confidentiality meets protection in elastic optical networks. Opt. Switch. Netw 42, 100620 (2021)

    Article  Google Scholar 

  5. Hai, D.T., Minh, H.T., Chau, L.H.: QoS-aware protection in elastic optical networks with distance-adaptive and reconfigurable modulation formats. Opt. Fiber Technol. 61, 102364 (2021)

    Article  Google Scholar 

  6. Hai, D.: On the spectrum-efficiency of QoS-aware protection in elastic optical networks. Optik 202, 163563 (2020)

    Article  Google Scholar 

  7. Zhang, J., Bao, B., Yao, Q., Ren, D., Hu, J., Zhao, J.: 3D fragmentation metric and RCSA scheme for space division multiplexing elastic optical networks. IEEE Access 8, 201595–201605 (2020)

    Article  Google Scholar 

  8. Jafari-Beyrami, M., Rahbar, A.G., Hosseini, S.: On-demand fragmentation-aware spectrum allocation in space division multiplexed elastic optical networks with minimized crosstalk and multipath routing. Comput. Netw. 181, 107531 (2020)

    Article  Google Scholar 

  9. Zhou, Y., Sun, Q., Lin, S.: Link state aware dynamic routing and spectrum allocation strategy in elastic optical networks. IEEE Access 8, 45071–45083 (2020)

    Article  Google Scholar 

  10. Yan, B., Zhao, Y., Yu, X., Wang, W., Wu, Y., Wang, Y., Zhang, J.: Tidal-traffic-aware routing and spectrum allocation in elastic optical networks. J. Opt. Commun. Netw 10(11), 832–842 (2018)

    Article  Google Scholar 

  11. Fujii, S., Hirota, Y., Tode, H., Watanabe, T.: On-demand routing and spectrum allocation for energy-efficient AoD nodes in SDM-EONs. J.Opt. Commun. Netw. 9(11), 960–973 (2017)

    Article  Google Scholar 

  12. Abkenar, F.S., Rahbar, A.G.: Study and analysis of routing and spectrum allocation (RSA) and routing, modulation and spectrum allocation (RMSA) algorithms in elastic optical networks (EONs). Opt. Switch. Netw 23, 5–39 (2017)

    Article  Google Scholar 

  13. Kakati, D., Minz, M., Sonkar, R.K.: Performance analysis of grating-assisted passive mode-division multiplexing device using silicon photonics for high-speed RoF/RoFSO communication. Opt. Eng 60(1), 016102 (2021)

    Article  Google Scholar 

  14. Marković, G.: Routing and spectrum allocation in elastic optical networks using bee colony optimization. Photon Netw. Commun. 34(3), 356–374 (2017)

    Article  Google Scholar 

  15. Khan, A.: Online service provisioning in elastic optical networks with hybrid algorithm for congestion aware routing and spectrum allocation. Opt. Fiber Technol. 47, 27–32 (2019)

    Article  Google Scholar 

  16. Kakati, D., Arya, S.C.: Performance of 120 Gbps single channel coherent DP-16-QAM in terrestrial FSO link under different weather conditions. Optik 178, 1230–1239 (2019)

    Article  Google Scholar 

  17. Goścień, R.: Two metaheuristics for routing and spectrum allocation in cloud-ready survivable elastic optical networks. Swarm Evol. Comput. 44, 388–403 (2019)

    Article  Google Scholar 

  18. Enoch, J., Jaumard, B.: Towards optimal and scalable solution for routing and spectrum allocation. Electron. Notes Discret. Math. 64, 335–344 (2018)

    Article  MathSciNet  Google Scholar 

  19. Bai, W., Yang, H., Yu, A., Xiao, H., He, L., Feng, L., Zhang, J.: Eavesdropping-aware routing and spectrum allocation based on multi-flow virtual concatenation for confidential information service in elastic optical networks. Opt. Fiber Technol. 40, 18–27 (2018)

    Article  Google Scholar 

  20. Pióro, M. and Medhi, D., Routing, flow, and capacity design in communication and computer networks, (2004) Elsevier

  21. Walkowiak, Krzysztof: Modeling and optimization of cloud-ready and content-oriented networks. Springer, Cham (2016)

    Book  Google Scholar 

  22. Zhukovyts’kyy, I., Pakhomova, V., Domanskay, H. and Nechaiev, A.:Distribution of information flows in the advanced network of MPLS of railway transport by means of a neural model. In: MATEC Web of Conferences, (2019) 294, 04007 https://doi.org/10.1051/matecconf/201929404007

  23. Carofiglio, G., Morabito, G., Muscariello, L., Solis, I., Varvello, M.: From content delivery today to information centric networking. Comput. Netw. 57(16), 3116–3127 (2013). https://doi.org/10.1016/j.comnet.2013.07.002

    Article  Google Scholar 

  24. Tyson, G., Bodanese, E., Bigham, J., Mauthe, A.: Beyond content delivery: Can icns help emergency scenarios? IEEE Netw. 28(3), 44–49 (2014). https://doi.org/10.1109/MNET.2014.6843231

    Article  Google Scholar 

  25. Simmons, J.M.: Optical network design and planning. Springer International Publishing, Cham (2014)

    Book  Google Scholar 

  26. Tomkos, I., Azodolmolky, S., Sole-Pareta, J., Careglio, D., Palkopoulou, E.: A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges. Proc. IEEE 102(9), 1317–1337 (2014). https://doi.org/10.1109/JPROC.2014.2324652

    Article  Google Scholar 

  27. Zhang, F.: Generalized Labels for the Flexi-Grid in Lambda Switch Capable (LSC) Label Switching Routers, (2015) http://www.rfc-editor.org/info/rfc7699

  28. Mukherjee, B.: WDM optical communication networks: progress and challenges. IEEE J. Selected Areas Commun. 18(10), 1810–1824 (2000). https://doi.org/10.1109/49.887904

    Article  Google Scholar 

  29. Recommendation, I.T.U.T., "Optical interfaces for multichannel systems with optical amplifiers," 1998.

  30. Ali, F., Muhammad, F., Habib, U., Khan, Y., Usman, M.: Modeling and minimization of FWM effects in DWDM-based long-haul optical communication systems. Photonic Netw. Commun. 41(1), 36–46 (2020). https://doi.org/10.1007/s11107-020-00913-9

    Article  Google Scholar 

  31. Yen, T.-H., Hung, Y.-Jr.: Fabrication-tolerant CWDM (de)multiplexer based on cascaded mach–zehnder interferometers on silicon-on-insulator. J. Lightwave Technol. 39(1), 146–153 (2021). https://doi.org/10.1109/JLT.2020.3026314

    Article  Google Scholar 

  32. Khan, A.N., Ahmed, H.Y., Zeghid, M., Imtiaz, W.A., Khan, Z.H.: Link congestion aware proactive routing for dynamic traffic in elastic optical networks. IEEE Photonics J. 13(1), 1–15 (2021)

    Article  Google Scholar 

  33. Ali, F., Khan, Y., Muhammad, F., Habib, U., Abbas, Z.H., Khan, M.A., Ali, A.: Extenuation of phase shift influenced nonlinear impairments in fiber optics network. Trans.Emerg Telecommun. Technol. (2020). https://doi.org/10.1002/ett.3930

    Article  Google Scholar 

  34. Ali, F., Khan, Y., Ali, A. and Ahmad, G.: Minimization of nonlinear impairments and its impact on transmission performances of high-capacity long-haul optical networks, Journal of Optical Communications, (2018) pp. (ahead-of-print)

  35. Ali, F., Ahmad, S., Muhammad, F., Abbas, Z.H., Habib, U., Kim, S.: Adaptive equalization for dispersion mitigation in multi-channel optical communication networks. Electronics 8(11), 1364 (2019). https://doi.org/10.3390/electronics8111364

    Article  Google Scholar 

  36. A. Hadian, M. Bagherian and B. Fathi Vajargah.: A Heuristic Algorithm for Multi-layer Network Optimization in Cloud Computing. Journal of AI and Data Mining, 3 361–367, (2021)

  37. Masood, M., Fouad, M.M., Kamal, R., Glesk, I., Khan, I.U.: An improved particle swarm algorithm for multi-objectives based optimization in MPLS/GMPLS networks. IEEE Access 7, 137147–137162 (2019). https://doi.org/10.1109/ACCESS.2019.2934946

    Article  Google Scholar 

  38. Sharma, N., Agrawal, S., Kapoor, V.: Performance optimization of OADM based DP-QPSK DWDM optical network with 37.5 GHz channel spacing. Opt. Switch. Netw. 40, 100606 (2021). https://doi.org/10.1016/j.osn.2021.100606

    Article  Google Scholar 

  39. Azeddien S, Hadeel Y Ben R.: Towards monitoring hybrid next-generation software-defined and service provider MPLS networks‏. Computer Networks, (2021) 107960 https://www.fruct.org/publications/acm28/files/Sll.pdf

  40. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Yoshimatsu, T., Kobayashi, T., Miyamoto, Y., Yonenaga, K., Takada, A., Ishida, O. and Matsuoka, S.: Demonstration of novel spectrum-efficient elastic optical path network with per-channe, (2008) https://doi.org/10.1109/ECOC.2008.4729581

  41. Jinno, M., Kozicki, B., Takara, H., Watanabe, A., Sone, Y., Tanaka, T., Hirano, A.: Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network [topics in optical communications. IEEE Commun. Mag. 48(8), 138–145 (2010). https://doi.org/10.1109/MCOM.2010.5534599

    Article  Google Scholar 

  42. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009). https://doi.org/10.1109/MCOM.2009.5307468

    Article  Google Scholar 

  43. Jinno, M., Takara, H. and Kozicki, B.: Concept and enabling technologies of spectrum-sliced elastic optical path network (SLICE), In:Asia Communications and Photonics Conference and Exhibition (p. FO2). Optical Society of America. (2009a) https://doi.org/10.1364/ACP.2009.FO2

  44. Jinno, M., Takara, H. and Kozicki, B.: Dynamic optical mesh networks: drivers, challenges and solutions for the future, In 2009 35th European Conference on Optical Communication, (2009b)

  45. Jinno, M. and Tsukishima, Y.: Virtualized optical network (VON) for agile cloud computing environment, In 2009 Conference on Optical Fiber Communication-incudes post deadline papers). IEEE., (2009) https://doi.org/10.1364/OFC.2009.OMG1

  46. Kozicki, B., Takara, H., Sone, Y., Watanabe, A. and Jinno, M.: Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment. In: 2010 Conference on Optical Fiber Communication (OFC/NFOEC), colloc (2010). https://doi.org/10.1364/OFC.2010.OMU3

  47. Kozicki, B., Takara, H., Tsukishima, Y., Yoshimatsu, T., Kobayashi, T., Yonenaga, K., Jinno, M.: Optical path aggregation for 1-Tb/s transmission in spectrum-sliced elastic optical path network. IEEE Photonics Technol. Lett. 22(17), 1315–1317 (2010). https://doi.org/10.1109/LPT.2010.2055046

    Article  Google Scholar 

  48. Kozicki, B., Takara, H., Yoshimatsu, T., Yonenaga, K. and Jinno, M.: Filtering characteristics of highly-spectrum efficient spectrum-sliced elastic optical path (SLICE) network.In: National Fiber Optic Engineers Conference (p. JWA43). Optical, (2009)https://doi.org/10.1364/NFOEC.2009.JWA43

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehri Bagherian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian, A., Bagherian, M. & Ayat, S.S. A new mathematical model considering the multi-protocol label switching and the routing and spectrum allocation problems jointly in elastic optical networks. Photon Netw Commun 44, 10–20 (2022). https://doi.org/10.1007/s11107-022-00978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-022-00978-8

Keywords

Navigation