Skip to main content
Log in

Squeeze flow and rheological characterization of pure bitumen and bitumen mixed with kaolin

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This study dealt with an experimental squeeze-flow test between two parallel disks and rheological measurements using a rotational rheometer of pure bitumen and bitumen mixed with 10 and 20 wt.% kaolin without slip condition. The experimental procedure of the homogeneous samples’ preparation was described. A steady-state and dynamic rheological analysis for pure bitumen and bitumen mixed with kaolin was detailed. Results show that pure bitumen and bitumen mixed with 10 wt.% kaolin at 26 °C correspond to a shear-thinning behavior. The effect of the kaolin particles becomes more critical at low shear rates than at high shear rates, where the matrix effect was dominant. The influence of temperature on bitumen mixed with 20 wt.% kaolin was investigated, and the obtained results show that the samples behave like a power-law model at 50 °C. Besides, the squeeze-flow test impact at an ambient temperature of 26 °C for pure bitumen and bitumen mixed with kaolin was also studied. Adding kaolin leads to a significant increase in viscosity and confirms the studied cases in the rheometry test at 26 °C. It was proven that pure bitumen and bitumen mixed with kaolin follow a power-law model at a specific range of shear rate. In particular, the decrease of the shear rate in bitumen mixed with 20 wt.% kaolin triggers the detection of the yield stress, which did not appear in the rheological measurements due to the applied deformation either in the shear and/or the elongational flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stefan JF (1974) Versuche uber die scheinbare adhasion. Sitz Kais Akad Wiss MathNat Wien 69:713–735

    Google Scholar 

  2. Scott J (1931) Theory and application of the parallel-plate plastimeter. Trans Inst Rubber Ind 7:169–186

    CAS  Google Scholar 

  3. Engmann J, Servais C, Burbidge AS (2005) Squeeze flow theory and applications to rheometry: a review. J Non-Newton Fluid Mech 132:1–27. https://doi.org/10.1016/j.jnnfm.2005.08.007

    Article  CAS  Google Scholar 

  4. Roussel N, Lanos C, Toutou Z (2006) Identification of bingham fluid flow parameters using a simple squeeze test. J Non-Newton Fluid Mech 135:1–7. https://doi.org/10.1016/j.jnnfm.2005.12.001

    Article  CAS  Google Scholar 

  5. Ayadi A (2011) Exact analytic solutions of the lubrication equations for squeeze-flow of a biviscous fluid between two parallel disks. J Non-Newton Fluid Mech 166:1253–1261. https://doi.org/10.1016/j.jnnfm.2011.08.003

    Article  CAS  Google Scholar 

  6. Delhaye N, Poitou A, Chaouche M (2000) Squeeze flow of highly concentrated suspensions of spheres. J Non-Newton Fluid Mech 94:67–74. https://doi.org/10.1016/S0377-0257(00)00130-0

    Article  CAS  Google Scholar 

  7. Collomb J, Chaari F, Chaouche M (2003) Squeeze flow of concentrated suspensions of spheres in newtonian or shear-thinning fluids. Int J Appl Mech Eng 9:219–224

    Google Scholar 

  8. Collomb J, Chaari F, Chaouche M (2004) Squeeze flow of concentrated suspensions of spheres in newtonian and shear-thinning fluids. J Rheol 48:405–416. https://doi.org/10.1122/1.1645514

    Article  CAS  Google Scholar 

  9. Nikkhoo M, Khodabandehlou K, Brozovsky LA, Gadala-Maria F (2013) Normal stress distribution in highly concentrated suspensions undergoing squeeze flow. Rheol Acta 52:155–163. https://doi.org/10.1007/s00397-013-0681-y

    Article  CAS  Google Scholar 

  10. Nikkhoo M, Gadala-Maria F (2014) Modeling radial filtration in squeeze flow of highly concentrated suspensions. Rheol Acta 53:607–619. https://doi.org/10.1007/s00397-014-0782-2

    Article  CAS  Google Scholar 

  11. Nikkhoo M, Hofman A, Gadala-Maria F (2014) Radial filtration in highly concentrated suspensions undergoing constant-force squeeze flow and its effect on the normal stress distribution. Rheol Acta 53:303–314. https://doi.org/10.1007/s00397-014-0763-5

    Article  CAS  Google Scholar 

  12. Servais C, Luciani A, Månson JAE (2002) Squeeze flow of concentrated long fibre suspensions: experiments and model. J Non-Newton Fluid Mech 104:165–184. https://doi.org/10.1016/S0377-0257(02)00018-6

    Article  CAS  Google Scholar 

  13. Kolenda F, Retana P, Racineux G, Poitou A (2003) Identification of rheological parameters by the squeezing test. Powder Technol 130:56–62. https://doi.org/10.1016/S0032-5910(02)00227-9

    Article  CAS  Google Scholar 

  14. Roussel N, Lanos C (2003) Plastic fluid flow parameters identification using a simple squeezing test. Appl Rheol 13:132–141. https://doi.org/10.1515/arh-2003-0009

    Article  CAS  Google Scholar 

  15. Meeten GH (2000) Yield stress of structured fluids measured by squeeze flow. Rheol Acta 39:399–408. https://doi.org/10.1007/s003970000071

    Article  CAS  Google Scholar 

  16. Meeten GH (2002) Constant-force squeeze flow of soft solids. Rheol Acta 41:557–566. https://doi.org/10.1007/s00397-002-0241-3

    Article  CAS  Google Scholar 

  17. Meeten GH (2004) Effects of plate roughness in squeeze-flow rheometry. J Non-Newton Fluid Mech 124:51–60. https://doi.org/10.1016/j.jnnfm.2004.07.003

    Article  CAS  Google Scholar 

  18. Meeten GH (2004) Squeeze flow of soft solids between rough surfaces. Rheol Acta 43:6–16. https://doi.org/10.1007/s00397-003-0311-1

    Article  CAS  Google Scholar 

  19. Meeten GH (2010) Comparison of squeeze flow and vane rheometry for yield stress and viscous fluids. Rheol Acta 49:45–52. https://doi.org/10.1007/s00397-009-0391-7

    Article  CAS  Google Scholar 

  20. Chan TW, Baird DG (2002) An evaluation of a squeeze flow rheometer for the rheological characterization of a filled polymer with a yield stress. Rheol Acta 41:245–256. https://doi.org/10.1007/s00397-001-0214-y

    Article  CAS  Google Scholar 

  21. Shafahi M, Ashrafi N (2020) Numerical investigation of a non-newtonian fluid squeezed between two parallel disks. Korea-Aust Rheol J 32:89–97. https://doi.org/10.1007/s13367-020-0002-9

    Article  Google Scholar 

  22. Majhi A, Pardhi TK, Deshpande AP (2015) Analysis of squeeze flow of fluids between solid and porous surfaces. Int J Multiph Flow 68:93–99. https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.007

    Article  CAS  Google Scholar 

  23. See H, Jiang P, Phan-Thien N (2000) Concentration dependence of the linear viscoelastic properties of particle suspensions. Rheol Acta 39:131–137. https://doi.org/10.1007/s003970050013

    Article  CAS  Google Scholar 

  24. Porto M, Caputo P, Loise V et al (2019) Bitumen and bitumen modification: a review on latest advances. Appl Sci. https://doi.org/10.3390/app9040742

    Article  Google Scholar 

  25. Shah PM, Mir MS (2020) Performance of OMMT/SBS on the rheological properties of asphalt binder. Korea-Aust Rheol J 32:235–242. https://doi.org/10.1007/S13367-020-0022-5

    Article  Google Scholar 

  26. González O, Muñoz ME, Santamaría A et al (2004) Rheology and stability of bitumen/EVA blends. Eur Polym J 40:2365–2372. https://doi.org/10.1016/j.eurpolymj.2004.06.001

    Article  CAS  Google Scholar 

  27. Peralta J, Hilliou L, Silva HMRD et al (2013) Rheological changes in the bitumen caused by heating and interaction with rubber during asphalt–rubber production. Rheol Acta 53:143–157. https://doi.org/10.1007/s00397-013-0748-9

    Article  CAS  Google Scholar 

  28. Soenen H, Lu X, Laukkanen OV (2016) Oxidation of bitumen: molecular characterization and influence on rheological properties. Rheol Acta 55:315–326. https://doi.org/10.1007/s00397-016-0919-6

    Article  CAS  Google Scholar 

  29. Yuliestyan A, Cuadri AA, García-Morales M, Partal P (2018) Selection of ethylene-vinyl-acetate properties for modified bitumen with enhanced end-performance. Rheol Acta 57:71–82. https://doi.org/10.1007/s00397-017-1057-5

    Article  CAS  Google Scholar 

  30. Patil YP, Senador A, Mather PT, Shaw MT (2007) Rheological characterization of asphalt in a temperature-gradient combinatorial squeeze-flow setup. Rheol Acta 46:1075–1082. https://doi.org/10.1007/s00397-007-0196-5

    Article  CAS  Google Scholar 

  31. Doraiswamy D, Mujumdar AN, Tsao I et al (1991) The cox-merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685. https://doi.org/10.1122/1.550184

    Article  CAS  Google Scholar 

  32. Gleissle W, Hochstein B (2003) Validity of the cox-merz rule for concentrated suspensions. J Rheol 47:897–910. https://doi.org/10.1122/1.1574020

    Article  CAS  Google Scholar 

  33. Ishii M, Nakamura H (2020) Applicability of modified cox-merz rule to concentrated suspensions. J Non-Newton Fluid Mech 282:104322. https://doi.org/10.1016/j.jnnfm.2020.104322

    Article  CAS  Google Scholar 

  34. Karatas M, Benli A, Arslan F (2020) The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120300

    Article  Google Scholar 

  35. Férec J, Perrot A, Ausias G et al (2015) Toward modeling anisotropic yield stress and consistency induced by fiber in fiber-reinforced viscoplastic fluids. J Non-Newton Fluid Mech 220:69–76. https://doi.org/10.1016/j.jnnfm.2014.08.009ï

    Article  Google Scholar 

  36. Qiu X, Liu Y, Alshameri A et al (2017) Viscosity of kaolin slurries: effects of dispersant and urea-intercalation. J Wuhan Univ Technol Sci Ed 32:51–57. https://doi.org/10.1007/s11595-017-1557-2

    Article  CAS  Google Scholar 

  37. Gallegos C, García-Morales M (2011) Rheology of polymer modified bitumens. Polymer modified bitumen, 1st edn. Woodhead publishing, pp 197–237

    Chapter  Google Scholar 

  38. Zhang J, Airey GD, Grenfell J, Yao Z (2017) Laboratory evaluation of Rediset modified bitumen based on rheology and adhesion properties. Constr Build Mater 152:683–692. https://doi.org/10.1016/j.conbuildmat.2017.07.037

    Article  Google Scholar 

  39. Laun HM, Rady M, Hassager O (1999) Analytical solutions for squeeze flow with partial wall slip. J Non-Newton Fluid Mech 81:1–15. https://doi.org/10.1016/S0377-0257(98)00083-4

    Article  CAS  Google Scholar 

  40. Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newton Fluid Mech 211:31–49. https://doi.org/10.1016/j.jnnfm.2014.05.006

    Article  CAS  Google Scholar 

  41. Shan L, Tan Y, Richard Kim Y (2012) Applicability of the cox-merz relationship for asphalt binder. Constr Build Mater 37:716–722. https://doi.org/10.1016/j.conbuildmat.2012.07.020

    Article  Google Scholar 

  42. Saint-Michel F, Pignon F, Magnin A (2005) Rheometric properties of micron-sized CaCO3 suspensions stabilised by a physical polyol/silica gel for polyurethane foams. Rheol Acta 44:644–653. https://doi.org/10.1007/s00397-005-0446-3

    Article  CAS  Google Scholar 

  43. Roussel N, Lanos C (2004) Particle fluid separation in shear flow of dense suspensions: Experimental measurements on squeezed clay pastes. Appl Rheol 14:256–265. https://doi.org/10.1515/arh-2004-0015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Kraiem.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraiem, A., Ayadi, A. & Elkissi, N. Squeeze flow and rheological characterization of pure bitumen and bitumen mixed with kaolin. Korea-Aust. Rheol. J. 34, 211–222 (2022). https://doi.org/10.1007/s13367-022-00035-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00035-w

Keywords

Navigation