1932

Abstract

Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-092702
2022-07-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-092702.html?itemId=/content/journals/10.1146/annurev-neuro-111020-092702&mimeType=html&fmt=ahah

Literature Cited

  1. Alcantara Llaguno SR, Wang Z, Sun D, Chen J, Xu J et al. 2015. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 28:4429–40
    [Google Scholar]
  2. Ayala GE, Wheeler TM, Shine HD, Schmelz M, Frolov A et al. 2001. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49:3213–23
    [Google Scholar]
  3. Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG. 2009. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28:403537–50
    [Google Scholar]
  4. Bahrey HLP, Moody WJ. 2003. Voltage-gated currents, dye and electrical coupling in the embryonic mouse neocortex. Cereb. Cortex 13:3239–51
    [Google Scholar]
  5. Banasr M, Hery M, Printemps R, Daszuta A. 2004. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:3450–60
    [Google Scholar]
  6. Barres BA, Raff MC. 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:6409258–60
    [Google Scholar]
  7. Barres BA, Raff MC, Gaese F, Bartke I, Dechant G, Barde Y-A. 1994. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367:6461371–75
    [Google Scholar]
  8. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. 1989. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. 416:1303–25
    [Google Scholar]
  9. Bergles DE, Roberts JDB, Somogyi P, Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:6783187–91
    [Google Scholar]
  10. Bhat K, Saki M, Vlashi E, Cheng F, Duhachek-Muggy S et al. 2020. The dopamine receptor antagonist trifluoperazine prevents phenotype conversion and improves survival in mouse models of glioblastoma. PNAS 117:2011085–96
    [Google Scholar]
  11. Bito H, Deisseroth K, Tsien RW. 1996. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:71203–14
    [Google Scholar]
  12. Bittman K, Owens DF, Kriegstein AR, LoTurco JJ. 1997. Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci. 17:187037–44
    [Google Scholar]
  13. Bittman KS, LoTurco JJ. 1999. Differential regulation of connexin 26 and 43 in murine neocortical precursors. Cereb. Cortex 9:2188–95
    [Google Scholar]
  14. Blanchart A, Fernando R, Häring M, Assaife-Lopes N, Romanov RA et al. 2017. Endogenous GABAA receptor activity suppresses glioma growth. Oncogene 36:6777–86
    [Google Scholar]
  15. Blankenship AG, Feller MB. 2010. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11:118–29
    [Google Scholar]
  16. Boilly B, Faulkner S, Jobling P, Hondermarck H. 2017. Nerve dependence: from regeneration to cancer. Cancer Cell 31:3342–54
    [Google Scholar]
  17. Bortone D, Polleux F. 2009. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62:153–71
    [Google Scholar]
  18. Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S et al. 2011. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17:101269–74
    [Google Scholar]
  19. Campbell SL, Buckingham SC, Sontheimer H. 2012. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia 53:81360–70
    [Google Scholar]
  20. Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC et al. 2015. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63:123–36
    [Google Scholar]
  21. Cancedda L, Fiumelli H, Chen K, Poo M. 2007. Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J. Neurosci. 27:195224–35
    [Google Scholar]
  22. Canudas AM, Giorgi-Gerevini VD, Iacovelli L, Nano G, D'Onofrio M et al. 2004. PHCCC, a specific enhancer of type 4 metabotropic glutamate receptors, reduces proliferation and promotes differentiation of cerebellar granule cell neuroprecursors. J. Neurosci. 24:4610343–52
    [Google Scholar]
  23. Caragher SP, Shireman JM, Huang M, Miska J, Atashi F et al. 2019. Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma. J. Neurosci. 39:111982–93
    [Google Scholar]
  24. Catalano SM, Shatz CJ. 1998. Activity-dependent cortical target selection by thalamic axons. Science 281:5376559–62
    [Google Scholar]
  25. Chen J, Li Y, Yu T-S, McKay RM, Burns DK et al. 2012. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:7412522–26
    [Google Scholar]
  26. Chen Q, Boire A, Jin X, Valiente M, Er EE et al. 2016. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533:7604493–98
    [Google Scholar]
  27. Corlew R, Bosma MM, Moody WJ. 2004. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J. Physiol. 560:2377–90
    [Google Scholar]
  28. Cui B, Luo Y, Tian P, Peng F, Lu J et al. 2019. Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J. Clin. Investig. 129:31030–46
    [Google Scholar]
  29. Dantzker JL, Callaway EM. 1998. The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity. J. Neurosci. 18:114145–54
    [Google Scholar]
  30. De Marco García NV, Karayannis T, Fishell G. 2011. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472:7343351–55
    [Google Scholar]
  31. Deisseroth K, Bito H, Tsien RW. 1996. Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:189–101
    [Google Scholar]
  32. Deisseroth K, Heist EK, Tsien RW. 1998. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392:6672198–202
    [Google Scholar]
  33. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. 2004. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:4535–52
    [Google Scholar]
  34. Dolma S, Selvadurai HJ, Lan X, Lee L, Kushida M et al. 2016. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 29:6859–73
    [Google Scholar]
  35. Dvorak AV, Swift-LaPointe T, Vavasour IM, Lee LE, Abel S et al. 2021. An atlas for human brain myelin content throughout the adult life span. Sci. Rep. 11:1269
    [Google Scholar]
  36. Filbin M, Monje M. 2019. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat. Med. 25:3367–76
    [Google Scholar]
  37. Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE et al. 2018. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:6386331–35
    [Google Scholar]
  38. Flechsig P. 1920. Anatomie des Menschlichen Gehirns und Rückenmarks auf Myelogenetischer Grundlage Leipzig: G. Thieme
  39. Fry AE, Fawcett KA, Zelnik N, Yuan H, Thompson BAN et al. 2018. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 141:3698–712
    [Google Scholar]
  40. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS et al. 2012. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:7399517–21
    [Google Scholar]
  41. Galvao RP, Kasina A, McNeill RS, Harbin JE, Foreman O et al. 2014. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. PNAS 111:40E4214–23
    [Google Scholar]
  42. Garaschuk O, Hanse E, Konnerth A. 1998. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. 507:1219–36
    [Google Scholar]
  43. Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A et al. 2019. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103:2250–65.e8
    [Google Scholar]
  44. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:61831252304
    [Google Scholar]
  45. Haag D, Mack N, Goncalves da Silva PB, Statz B, Clark J et al. 2021. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 39:3407–22.e13
    [Google Scholar]
  46. Harris WA. 1981. Neural activity and development. Annu. Rev. Physiol. 43:689–710
    [Google Scholar]
  47. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R et al. 2017. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31:121–34
    [Google Scholar]
  48. He J-J, Zhang W-H, Liu S-L, Chen Y-F, Liao C-X et al. 2017. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol. Lett. 14:33846–52
    [Google Scholar]
  49. Hebb DO. 1949. The Organization of Behavior: A Neuropsychological Theory Mahwah, NJ: Lawrence Erlbaum Assoc.
  50. Hill RA, Li AM, Grutzendler J. 2018. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21:5683–95
    [Google Scholar]
  51. Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM et al. 2020. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26:81803–11
    [Google Scholar]
  52. Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B. 2015. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18:5683–89
    [Google Scholar]
  53. Huang EJ, Reichardt LF. 2001. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24:677–736
    [Google Scholar]
  54. Hughes EG, Kang SH, Fukaya M, Bergles DE. 2013. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16:6668–76
    [Google Scholar]
  55. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE. 2018. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21:5696–706
    [Google Scholar]
  56. Huxley AF, Stämpeli R. 1949. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. 108:3315–39
    [Google Scholar]
  57. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N et al. 2002. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 8:9971–78
    [Google Scholar]
  58. Johnston ALM, Lun X, Rahn JJ, Liacini A, Wang L et al. 2007. The p75 neurotrophin receptor is a central regulator of glioma invasion. PLOS Biol. 5:8e212
    [Google Scholar]
  59. Jung E, Osswald M, Blaes J, Wiestler B, Sahm F et al. 2017. Tweety-homolog 1 drives brain colonization of gliomas. J. Neurosci. 37:296837–50
    [Google Scholar]
  60. Káradóttir R, Cavelier P, Bergersen LH, Attwell D. 2005. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:70711162–66
    [Google Scholar]
  61. Kast RE. 2010. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines. Br. J. Pharmacol. 161:3481–87
    [Google Scholar]
  62. Katz LC, Shatz CJ. 1996. Synaptic activity and the construction of cortical circuits. Science 274:52901133–38
    [Google Scholar]
  63. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WEF, Goldbrunner R et al. 2010. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16:1116–22
    [Google Scholar]
  64. Kinney HC, Brody BA, Kloman AS, Gilles FH. 1988. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47:3217–34
    [Google Scholar]
  65. Kirkby LA, Sack GS, Firl A, Feller MB. 2013. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 80:51129–44
    [Google Scholar]
  66. Knox SM, Lombaert IMA, Haddox CL, Abrams SR, Cotrim A et al. 2013. Parasympathetic stimulation improves epithelial organ regeneration. Nat. Commun. 4:11494
    [Google Scholar]
  67. Knox SM, Lombaert IMA, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP. 2010. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science 329:59991645–47
    [Google Scholar]
  68. Köhling R, Senner V, Paulus W, Speckmann E-J. 2006. Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol. Dis. 22:164–75
    [Google Scholar]
  69. Krishna S, Choudhury A, Seo K, Ni L, Kakaizada S et al. 2021a. Glioblastoma remodeling of neural circuits in the human brain decreases survival. bioRxiv 2021.02.18.431915. https://doi.org/10.1101/2021.02.18.431915
    [Crossref]
  70. Krishna S, Kakaizada S, Almeida N, Brang D, Hervey-Jumper S. 2021b. Central nervous system plasticity influences language and cognitive recovery in adult glioma. Neurosurgery 89:4539–48
    [Google Scholar]
  71. Kuffler SW. 1967. The Ferrier lecture—neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. B 168:1–21
    [Google Scholar]
  72. Labrakakis C, Patt S, Hartmann J, Kettenmann H. 1998a. Glutamate receptor activation can trigger electrical activity in human glioma cells. Eur. J. Neurosci. 10:62153–62
    [Google Scholar]
  73. Labrakakis C, Patt S, Hartmann J, Kettenmann H. 1998b. Functional GABAA receptors on human glioma cells. Eur. J. Neurosci. 10:1231–38
    [Google Scholar]
  74. Lawn S, Krishna N, Pisklakova A, Qu X, Fenstermacher DA et al. 2015. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J. Biol. Chem. 290:63814–24
    [Google Scholar]
  75. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C 2012. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:1340–52
    [Google Scholar]
  76. Leclerc C, Daguzan C, Nicolas M-T, Chabret C, Duprat A-M, Moreau M. 1997. L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mech. Dev. 64:1–2105–10
    [Google Scholar]
  77. Leclerc C, Rizzo C, Daguzan C, Néant I, Batut J et al. 2001. Neural determination in Xenopus laevis embryos: control of early neural gene expression by calcium. J. Soc. Biol. 195:3327–37
    [Google Scholar]
  78. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G. 2002. Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:55752049–52
    [Google Scholar]
  79. Li L, Hanahan D. 2013. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell 153:186–100
    [Google Scholar]
  80. Li L, Zeng Q, Bhutkar A, Galván JA, Karamitopoulou E et al. 2018. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell 33:4736–51.e5
    [Google Scholar]
  81. Li Y-S, Milner PG, Chauhan AK, Watson MA, Hoffman RM et al. 1990. Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science 250:49881690–94
    [Google Scholar]
  82. Li Z, Gao W, Fei Y, Gao P, Xie Q et al. 2019. NLGN3 promotes neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway. Eur. J. Pharmacol. 857:172423
    [Google Scholar]
  83. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. 2009. Perineural invasion in cancer. Cancer 115:153379–91
    [Google Scholar]
  84. Lin C-CJ, Yu K, Hatcher A, Huang T-W, Lee HK et al. 2017. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20:3396–405
    [Google Scholar]
  85. Lin S, Bergles DE. 2004. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7:124–32
    [Google Scholar]
  86. Lippe W. 1994. Rhythmic spontaneous activity in the developing avian auditory system. J. Neurosci. 14:31486–95
    [Google Scholar]
  87. Liu C, Sage JC, Miller MR, Verhaak RGW, Hippenmeyer S et al. 2011. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:2209–21
    [Google Scholar]
  88. Liu X, Wang Q, Haydar TF, Bordey A. 2005. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8:91179–87
    [Google Scholar]
  89. LoTurco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR. 1995. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:61287–98
    [Google Scholar]
  90. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA et al. 2021. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology 23:81231–51
    [Google Scholar]
  91. Lu KV, Jong KA, Kim GY, Singh J, Dia EQ et al. 2005. Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J. Biol. Chem. 280:2926953–64
    [Google Scholar]
  92. Luk KC, Sadikot AF. 2004. Glutamate and regulation of proliferation in the developing mammalian telencephalon. Dev. Neurosci. 26:2–4218–28
    [Google Scholar]
  93. Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA et al. 2013. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLOS Biol. 11:12e1001743
    [Google Scholar]
  94. Maeda N, Noda M. 1998. Involvement of receptor-like protein tyrosine phosphatase ζ/RPTPβ and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J. Cell Biol. 142:1203–16
    [Google Scholar]
  95. Magnon C, Hall SJ, Lin J, Xue X, Gerber L et al. 2013. Autonomic nerve development contributes to prostate cancer progression. Science 341:61421236361
    [Google Scholar]
  96. Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:61001357–60
    [Google Scholar]
  97. Marcus HJ, Carpenter KLH, Price SJ, Hutchinson PJ. 2010. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J. Neuro-Oncol. 97:111–23
    [Google Scholar]
  98. Marins M, Xavier ALR, Viana NB, Fortes FSA, Fróes MM, Menezes JRL. 2009. Gap junctions are involved in cell migration in the early postnatal subventricular zone. Dev. Neurobiol. 69:11715–30
    [Google Scholar]
  99. Mauffrey P, Tchitchek N, Barroca V, Bemelmans A-P, Firlej V et al. 2019. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:7758672–78
    [Google Scholar]
  100. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B et al. 2014. Motor skill learning requires active central myelination. Science 346:6207318–22
    [Google Scholar]
  101. Mehlen P, Delloye-Bourgeois C, Chédotal A. 2011. Novel roles for Slits and netrins: axon guidance cues as anticancer targets?. Nat. Rev. Cancer 11:3188–97
    [Google Scholar]
  102. Meister M, Wong R, Baylor D, Shatz C. 1991. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:5008939–43
    [Google Scholar]
  103. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J et al. 2015. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18:5628–30
    [Google Scholar]
  104. Mertsch S, Schmitz N, Jeibmann A, Geng J-G, Paulus W, Senner V. 2008. Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. J. Neuro-Oncol. 87:11–7
    [Google Scholar]
  105. Miao H, Gale NW, Guo H, Qian J, Petty A et al. 2015. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene 34:5558–67
    [Google Scholar]
  106. Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M. 2001. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29:2441–52
    [Google Scholar]
  107. Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D et al. 2018. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9:1306
    [Google Scholar]
  108. Monje M, Káradóttir RT. 2021. The bright and the dark side of myelin plasticity: neuron-glial interactions in health and disease. Semin. Cell Dev. Biol. 116:10–15
    [Google Scholar]
  109. Monje M, Mitra SS, Freret ME, Raveh TB, Kim J et al. 2011. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. PNAS 108:114453–58
    [Google Scholar]
  110. Mount CW, Yalçın B, Cunliffe-Koehler K, Sundaresh S, Monje M. 2019. Monosynaptic tracing maps brain-wide afferent oligodendrocyte precursor cell connectivity. eLife 8:e49291
    [Google Scholar]
  111. Mukouyama Y, Shin D, Britsch S, Taniguchi M, Anderson DJ. 2002. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:6693–705
    [Google Scholar]
  112. Nagaraja S, Quezada MA, Gillespie SM, Arzt M, Lennon JJ et al. 2019. Histone variant and cell context determine H3K27M reprogramming of the enhancer landscape and oncogenic state. Mol. Cell 76:6965–80.e12
    [Google Scholar]
  113. Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F et al. 2017. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell 31:5635–52.e6
    [Google Scholar]
  114. Nakada M, Drake KL, Nakada S, Niska JA, Berens ME. 2006. Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res. 66:178492–500
    [Google Scholar]
  115. Nakada M, Niska JA, Miyamori H, McDonough WS, Wu J et al. 2004. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res. 64:93179–85
    [Google Scholar]
  116. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM. 1993. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. New Engl. J. Med. 328:12847–54
    [Google Scholar]
  117. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME et al. 2019. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:4835–49.e21
    [Google Scholar]
  118. Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C et al. 2014. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. PNAS 111:3984–89
    [Google Scholar]
  119. Newton RC, Bradley EC, Levy RS, Doval D, Bondarde S et al. 2010. Clinical benefit of INCB7839, a potent and selective ADAM inhibitor, in combination with trastuzumab in patients with metastatic HER2+ breast cancer. J. Clin. Oncol. 28:Suppl. 153025
    [Google Scholar]
  120. Noori R, Park D, Griffiths JD, Bells S, Frankland PW et al. 2020. Activity-dependent myelination: a glial mechanism of oscillatory self-organization in large-scale brain networks. PNAS 117:2413227–37
    [Google Scholar]
  121. Ohtaka-Maruyama C, Okamoto M, Endo K, Oshima M, Kaneko N et al. 2018. Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science 360:6386313–17
    [Google Scholar]
  122. O'Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA. 2009. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. PNAS 106:218754–59
    [Google Scholar]
  123. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V et al. 2015. Brain tumour cells interconnect to a functional and resistant network. Nature 528:758093–98
    [Google Scholar]
  124. Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo CT. 2014. Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat. Neurosci. 17:7934–42
    [Google Scholar]
  125. Pajevic S, Basser PJ, Fields RD. 2014. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276:135–47
    [Google Scholar]
  126. Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. 2020. Preservation of a remote fear memory requires new myelin formation. Nat. Neurosci. 23:4487–99
    [Google Scholar]
  127. Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O et al. 2021. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594:7862277–82
    [Google Scholar]
  128. Park H, Poo M. 2013. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14:17–23
    [Google Scholar]
  129. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:61901396–401
    [Google Scholar]
  130. Peinado A, Yuste R, Katz LC. 1993. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:1103–14
    [Google Scholar]
  131. Penn A, Wong R, Shatz C. 1994. Neuronal coupling in the developing mammalian retina. J. Neurosci. 14:63805–15
    [Google Scholar]
  132. Peters A, Sethares C. 2002. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J. Comp. Neurol. 442:3277–91
    [Google Scholar]
  133. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA et al. 2015. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:4400–12
    [Google Scholar]
  134. Piggott BJ, Peters CJ, He Y, Huang X, Younger S et al. 2019. Paralytic, the Drosophila voltage-gated sodium channel, regulates proliferation of neural progenitors. Genes Dev 33:23–241739–50
    [Google Scholar]
  135. Platel J-C, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A. 2010. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65:6859–72
    [Google Scholar]
  136. Platzer K, Yuan H, Schütz H, Winschel A, Chen W et al. 2017. GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 54:7460–70
    [Google Scholar]
  137. Pundavela J, Roselli S, Faulkner S, Attia J, Scott RJ et al. 2015. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9:81626–35
    [Google Scholar]
  138. Qin EY, Cooper DD, Abbott KL, Lennon J, Nagaraja S et al. 2017. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 170:5845–59.e19
    [Google Scholar]
  139. Rauvala H, Pihlaskari R. 1987. Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J. Biol. Chem. 262:3416625–35
    [Google Scholar]
  140. Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y et al. 2018a. β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33:175–90.e7
    [Google Scholar]
  141. Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z et al. 2018b. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov 8:111458–73
    [Google Scholar]
  142. Rieger J, Wick W, Weller M. 2003. Human malignant glioma cells express semaphorins and their receptors, neuropilins and plexins. Glia 42:4379–89
    [Google Scholar]
  143. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H et al. 1999. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:6716251–55
    [Google Scholar]
  144. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC et al. 2016. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. PNAS 113:113078–83
    [Google Scholar]
  145. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. 2000. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:6657–69
    [Google Scholar]
  146. Schneider M, Vollmer L, Potthoff A-L, Ravi VM, Evert BO et al. 2021. Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro-Oncology 23:111885–97
    [Google Scholar]
  147. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL. 1994. Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. PNAS 91:2612867–71
    [Google Scholar]
  148. Sibille J, Pannasch U, Rouach N. 2014. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J. Physiol. 592:187–102
    [Google Scholar]
  149. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J et al. 2004. Identification of human brain tumour initiating cells. Nature 432:7015396–401
    [Google Scholar]
  150. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA et al. 2010. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70:187042–52
    [Google Scholar]
  151. Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R et al. 2018. Sodium channel SCN3A (NaV1.3) regulation of human cerebral cortical folding and oral motor development. Neuron 99:5905–13.e7
    [Google Scholar]
  152. Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D et al. 2019. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101:3459–71.e5
    [Google Scholar]
  153. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA et al. 2020. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105:1150–64.e6
    [Google Scholar]
  154. Stefaniuk M, Swiech L, Dzwonek J, Lukasiuk K. 2010. Expression of Ttyh1, a member of the Tweety family in neurons in vitro and in vivo and its potential role in brain pathology. J. Neurochem. 115:51183–94
    [Google Scholar]
  155. Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A et al. 2005. NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. PNAS 102:4315605–10
    [Google Scholar]
  156. Stoecklein VM, Stoecklein S, Galiè F, Ren J, Schmutzer M et al. 2020. Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro-Oncology 22:91388–98
    [Google Scholar]
  157. Stogsdill JA, Ramirez J, Liu D, Kim YH, Baldwin KT et al. 2017. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551:7679192–97
    [Google Scholar]
  158. Stopczynski RE, Normolle DP, Hartman DJ, Ying H, DeBerry JJ et al. 2014. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res 74:61718–27
    [Google Scholar]
  159. Südhof TC. 2008. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:7215903–11
    [Google Scholar]
  160. Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC. 1993. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J. Natl. Cancer Inst. 85:5377–84
    [Google Scholar]
  161. Swire M, Kotelevtsev Y, Webb DJ, Lyons DA, ffrench-Constant C. 2019. Endothelin signalling mediates experience-dependent myelination in the CNS. eLife 8:e49493
    [Google Scholar]
  162. Tantillo E, Vannini E, Cerri C, Spalletti C, Colistra A et al. 2020. Differential roles of pyramidal and fast-spiking, GABAergic neurons in the control of glioma cell proliferation. Neurobiol. Dis. 141:104942
    [Google Scholar]
  163. Tewarie IA, Senders JT, Hulsbergen AFC, Kremer S, Broekman MLD. 2021. Beta-blockers and glioma: a systematic review of preclinical studies and clinical results. Neurosurg. Rev. 44:2669–77
    [Google Scholar]
  164. Thompson EG, Sontheimer H. 2019. Acetylcholine receptor activation as a modulator of glioblastoma invasion. Cells 8:101203
    [Google Scholar]
  165. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. 2005. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:6803–15
    [Google Scholar]
  166. Tripathi RB, Jackiewicz M, McKenzie IA, Kougioumtzidou E, Grist M, Richardson WD. 2017. Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep 21:2316–23
    [Google Scholar]
  167. Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE 2007. The origin of spontaneous activity in the developing auditory system. Nature 450:716650–55
    [Google Scholar]
  168. Tsuchioka M, Takebayashi M, Hisaoka K, Maeda N, Nakata Y. 2008. Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) mRNA expression via the transactivation of fibroblast growth factor receptor 2 (FGFR2) in rat C6 glioma cells. J. Neurochem. 106:1244–57
    [Google Scholar]
  169. Ulbricht U, Brockmann MA, Aigner A, Eckerich C, Müller S et al. 2003. Expression and function of the receptor protein tyrosine phosphatase ζ and its ligand pleiotrophin in human astrocytomas. J. Neuropathol. Exp. Neurol. 62:121265–75
    [Google Scholar]
  170. Venkataramani V, Tanev DI, Kuner T, Wick W, Winkler F. 2020. Synaptic input to brain tumors: clinical implications. Neuro-Oncology 23:123–33
    [Google Scholar]
  171. Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L et al. 2019. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:7775532–38
    [Google Scholar]
  172. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y et al. 2015. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:4803–16
    [Google Scholar]
  173. Venkatesh HS, Monje M. 2017. Neuronal activity in ontogeny and oncology. Trends Cancer 3:89–112
    [Google Scholar]
  174. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM et al. 2019. Electrical and synaptic integration of glioma into neural circuits. Nature 573:7775539–45
    [Google Scholar]
  175. Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S et al. 2017. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:7673533–37
    [Google Scholar]
  176. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C et al. 2017. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355:6332eaai8478
    [Google Scholar]
  177. Vitali I, Fièvre S, Telley L, Oberst P, Bariselli S et al. 2018. Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex. Cell 174:51264–76.e15
    [Google Scholar]
  178. Wang C-L, Zhang L, Zhou Y, Zhou J, Yang X-J et al. 2007. Activity-dependent development of callosal projections in the somatosensory cortex. J. Neurosci. 27:4211334–42
    [Google Scholar]
  179. Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC et al. 2018. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 22:4514–28.e5
    [Google Scholar]
  180. Wang Z, Sun D, Chen Y-J, Xie X, Shi Y et al. 2020. Cell lineage-based stratification for glioblastoma. Cancer Cell 38:3366–79.e8
    [Google Scholar]
  181. Watt AJ, Cuntz H, Mori M, Nusser Z, Sjöström PJ, Häusser M. 2009. Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat. Neurosci. 12:4463–73
    [Google Scholar]
  182. Webb SE, Moreau M, Leclerc C, Miller AL. 2005. Calcium transients and neural induction in vertebrates. Cell Calcium 37:5375–85
    [Google Scholar]
  183. Weil S, Osswald M, Solecki G, Grosch J, Jung E et al. 2017. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro-Oncology 19:101316–26
    [Google Scholar]
  184. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR. 2004. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:5647–61
    [Google Scholar]
  185. Wong AW, Xiao J, Kemper D, Kilpatrick TJ, Murray SS. 2013. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J. Neurosci. 33:114947–57
    [Google Scholar]
  186. Wong ROL, Chernjavsky A, Smith SJ, Shatz CJ. 1995. Early functional neural networks in the developing retina. Nature 374:6524716–18
    [Google Scholar]
  187. Xiong J, Zhou L, Lim Y, Yang M, Zhu Y-H et al. 2013a. Mature BDNF promotes the growth of glioma cells in vitro. Oncol. Rep. 30:62719–24
    [Google Scholar]
  188. Xiong J, Zhou L, Lim Y, Yang M, Zhu Y-H et al. 2015. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol. Lett. 10:1223–27
    [Google Scholar]
  189. Xiong J, Zhou L, Yang M, Lim Y, Zhu Y et al. 2013b. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro-Oncology 15:8990–1007
    [Google Scholar]
  190. Yakovlev PL, Lecours AR 1967. The myelogenetic cycles of regional maturation of the brain. Regional Development of the Brain in Early Life A Minkowski 3–70 Oxford, UK: Blackwell
    [Google Scholar]
  191. Yiin J-J, Hu B, Jarzynka MJ, Feng H, Liu K-W et al. 2009. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro-Oncology 11:6779–89
    [Google Scholar]
  192. Young KM, Psachoulia K, Tripathi RB, Dunn S-J, Cossell L et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:5873–85
    [Google Scholar]
  193. Yu K, Lin C-CJ, Hatcher A, Lozzi B, Kong K et al. 2020. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578:7793166–71
    [Google Scholar]
  194. Zahalka AH, Arnal-Estapé A, Maryanovich M, Nakahara F, Cruz CD et al. 2017. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:6361321–26
    [Google Scholar]
  195. Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G et al. 2019. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573:7775526–31
    [Google Scholar]
  196. Zhao C-M, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB et al. 2014. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6:250250ra115
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-092702
Loading
/content/journals/10.1146/annurev-neuro-111020-092702
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error