1932

Abstract

Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110920-023056
2022-07-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110920-023056.html?itemId=/content/journals/10.1146/annurev-neuro-110920-023056&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. 2019. Microbiome-microglia connections via the gut-brain axis. J. Exp. Med. 216:41–59
    [Google Scholar]
  2. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. 2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14:1142–49
    [Google Scholar]
  3. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. 2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:1538–43
    [Google Scholar]
  4. Allen NJ, Eroglu C. 2017. Cell biology of astrocyte-synapse interactions. Neuron 96:697–708
    [Google Scholar]
  5. Allen NJ, Lyons DA. 2018. Glia as architects of central nervous system formation and function. Science 362:181–85
    [Google Scholar]
  6. Alves de Lima K, Rustenhoven J, Kipnis J. 2020. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38:597–620
    [Google Scholar]
  7. Arnoux I, Hoshiko M, Mandavy L, Avignone E, Yamamoto N, Audinat E. 2013. Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61:1582–94
    [Google Scholar]
  8. Arnoux I, Hoshiko M, Sanz Diez A, Audinat E 2014. Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia 62:399–410
    [Google Scholar]
  9. Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M et al. 2020. Maternal type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol. Psychiatry 25:1050–67
    [Google Scholar]
  10. Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA et al. 2018. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98:1170–83.e8
    [Google Scholar]
  11. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J et al. 2011. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23:1132–39
    [Google Scholar]
  12. Bergdolt L, Dunaevsky A. 2019. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog. Neurobiol. 175:1–19
    [Google Scholar]
  13. Bermudez-Martin P, Becker JAJ, Caramello N, Fernandez SP, Costa-Campos R et al. 2021. The microbial metabolite p-Cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome 9:157
    [Google Scholar]
  14. Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. 2018. Beyond infection—maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol. 299:241–51
    [Google Scholar]
  15. Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. 2017. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94:759–73.e8
    [Google Scholar]
  16. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM et al. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108:16050–55
    [Google Scholar]
  17. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. 2016. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165:1762–75
    [Google Scholar]
  18. Buss RR, Oppenheim RW. 2004. Role of programmed cell death in normal neuronal development and function. Anat. Sci. Int. 79:191–97
    [Google Scholar]
  19. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ et al. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:131–43
    [Google Scholar]
  20. Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P et al. 2014. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 83:1073–84
    [Google Scholar]
  21. Casano AM, Peri F 2015. Microglia: multitasking specialists of the brain. Dev. Cell 32:469–77
    [Google Scholar]
  22. Chahrour M, Kleiman RJ, Manzini MC. 2017. Translating genetic and preclinical findings into autism therapies. Dialogues Clin. Neurosci. 19:335–43
    [Google Scholar]
  23. Chaidez V, Hansen RL, Hertz-Picciotto I. 2014. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 44:1117–27
    [Google Scholar]
  24. Chen N, Bao Y, Xue Y, Sun Y, Hu D et al. 2017. Meta-analyses of RELN variants in neuropsychiatric disorders. Behav. Brain Res. 332:110–19
    [Google Scholar]
  25. Choi GB, Yim YS, Wong H, Kim S, Kim H et al. 2016. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351:933–39
    [Google Scholar]
  26. Chu Y, Jin X, Parada I, Pesic A, Stevens B et al. 2010. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. PNAS 107:7975–80
    [Google Scholar]
  27. Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L et al. 2007. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol. Psychiatry 12:292–306
    [Google Scholar]
  28. Cronk JC, Derecki NC, Ji E, Xu Y, Lampano AE et al. 2015. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity 42:679–91
    [Google Scholar]
  29. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R et al. 2018. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215:1627–47
    [Google Scholar]
  30. Cunningham CL, Martínez-Cerdeño V, Noctor SC. 2013. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33:4216–33
    [Google Scholar]
  31. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58
    [Google Scholar]
  32. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A et al. 2013. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLOS ONE 8:e76993
    [Google Scholar]
  33. de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. 2016. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22:345–61
    [Google Scholar]
  34. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A et al. 2010. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 51:418–24
    [Google Scholar]
  35. de Vivo L, Landi S, Panniello M, Baroncelli L, Chierzi S et al. 2013. Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. Nat. Commun. 4:1484
    [Google Scholar]
  36. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB et al. 2012. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–9
    [Google Scholar]
  37. Dodiya HB, Kuntz T, Shaik SM, Baufeld C, Leibowitz J et al. 2019. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J. Exp. Med. 216:1542–60
    [Google Scholar]
  38. Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA. 2016. Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 41:2206–14
    [Google Scholar]
  39. Erny D, Dokalis N, Mezo C, Castoldi A, Mossad O et al. 2021. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab 33:2260–76.e7
    [Google Scholar]
  40. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:965–77
    [Google Scholar]
  41. Estes ML, McAllister AK. 2015. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci. 16:469–86
    [Google Scholar]
  42. Estes ML, McAllister AK. 2016. Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–77
    [Google Scholar]
  43. Eyo UB, Dailey ME. 2013. Microglia: key elements in neural development, plasticity, and pathology. J. Neuroimmune Pharmacol. 8:494–509
    [Google Scholar]
  44. Fernandez de Cossio L, Guzman A, van der Veldt S, Luheshi GN. 2017. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 63:88–98
    [Google Scholar]
  45. Fields RD. 2015. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16:756–67
    [Google Scholar]
  46. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A et al. 2018. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48:979–91.e8
    [Google Scholar]
  47. Fourgeaud L, Traves PG, Tufail Y, Leal-Bailey H, Lew ED et al. 2016. TAM receptors regulate multiple features of microglial physiology. Nature 532:240–44
    [Google Scholar]
  48. Frade JM, Barde Y-A. 1998. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20:35–41
    [Google Scholar]
  49. Frasch MG, Szynkaruk M, Prout AP, Nygard K, Cao M et al. 2016. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway?. J. Neuroinflammation 13:103
    [Google Scholar]
  50. Fuger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C et al. 2017. Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nat. Neurosci. 20:1371–76
    [Google Scholar]
  51. Fulling C, Dinan TG, Cryan JF. 2019. Gut microbe to brain signaling: what happens in vagus. Neuron 101:998–1002
    [Google Scholar]
  52. Gabriele S, Sacco R, Altieri L, Neri C, Urbani A et al. 2016. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children. Autism Res. 9:752–59
    [Google Scholar]
  53. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45
    [Google Scholar]
  54. Glantz LA, Lewis DA. 2000. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57:65–73
    [Google Scholar]
  55. Goodspeed K, Perez-Palma E, Iqbal S, Cooper D, Scimemi A et al. 2020. Current knowledge of SLC6A1-related neurodevelopmental disorders. Brain Commun. 2:fcaa170
    [Google Scholar]
  56. Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES et al. 2017. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134:441–58
    [Google Scholar]
  57. Hanisch UK. 2002. Microglia as a source and target of cytokines. Glia 40:140–55
    [Google Scholar]
  58. Harrington AJ, Bridges CM, Berto S, Blankenship K, Cho JY et al. 2020. MEF2C hypofunction in neuronal and neuroimmune populations produces MEF2C haploinsufficiency syndrome-like behaviors in mice. Biol. Psychiatry 88:488–99
    [Google Scholar]
  59. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC et al. 2013. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16:1896–905
    [Google Scholar]
  60. Horiuchi M, Smith L, Maezawa I, Jin LW. 2017. CX3CR1 ablation ameliorates motor and respiratory dysfunctions and improves survival of a Rett syndrome mouse model. Brain Behav. Immun. 60:106–16
    [Google Scholar]
  61. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–63
    [Google Scholar]
  62. Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. 2019. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 12:19–29
    [Google Scholar]
  63. Hughes AN, Appel B. 2020. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23:1055–66
    [Google Scholar]
  64. Hutsler JJ, Zhang H. 2010. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309:83–94
    [Google Scholar]
  65. Ikezu S, Yeh H, Delpech JC, Woodbury ME, Van Enoo AA et al. 2021. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol. Psychiatry 26:1808–31
    [Google Scholar]
  66. Ji K, Akgul G, Wollmuth LP, Tsirka SE. 2013. Microglia actively regulate the number of functional synapses. PLOS ONE 8:e56293
    [Google Scholar]
  67. Kaczmarczyk R, Tejera D, Simon BJ, Heneka MT. 2018. Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease. J. Neurochem. 146:76–85
    [Google Scholar]
  68. Kaiser T, Feng G. 2019. Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro 6:ENEURO.0448–18.2019
    [Google Scholar]
  69. Kang DW, Adams JB, Coleman DM, Pollard EL, Maldonado J et al. 2019. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci. Rep. 9:5821
    [Google Scholar]
  70. Kim S, Kim H, Yim YS, Ha S, Atarashi K et al. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549:528–32
    [Google Scholar]
  71. Lammert CR, Frost EL, Bellinger CE, Bolte AC, McKee CA et al. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580:647–52
    [Google Scholar]
  72. Lammert CR, Frost EL, Bolte AC, Paysour MJ, Shaw ME et al. 2018. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. 201:845–50
    [Google Scholar]
  73. Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST et al. 2018. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100:120–34.e6
    [Google Scholar]
  74. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. 2017. Dysbiosis and the immune system. Nat. Rev. Immunol. 17:219–32
    [Google Scholar]
  75. Li T, Chiou B, Gilman CK, Luo R, Koshi T et al. 2020. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39:e104136
    [Google Scholar]
  76. Lim SH, Park E, You B, Jung Y, Park AR et al. 2013. Neuronal synapse formation induced by microglia and interleukin 10. PLOS ONE 8:e81218
    [Google Scholar]
  77. Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. 2021. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J. Neurosci. 41:1274–87
    [Google Scholar]
  78. Liyanage VRB, Rastegar M. 2014. Rett syndrome and MeCP2. Neuromolecular Med. 16:231–64
    [Google Scholar]
  79. Long-Smith C, O'Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF 2020. Microbiota-gut-brain axis: new therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 60:477–502
    [Google Scholar]
  80. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA et al. 2014. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516:246–49
    [Google Scholar]
  81. Macia L, Thorburn AN, Binge LC, Marino E, Rogers KE et al. 2012. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. Rev. 245:164–76
    [Google Scholar]
  82. Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M et al. 2020. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. MMWR Surveill. Summ. 69:1–12
    [Google Scholar]
  83. Maghsoudi N, Zakeri Z, Lockshin RA. 2012. Programmed cell death and apoptosis—where it came from and where it is going: from Elie Metchnikoff to the control of caspases. Exp. Oncol. 34:146–52
    [Google Scholar]
  84. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. 2004. Microglia promote the death of developing Purkinje cells. Neuron 41:535–47
    [Google Scholar]
  85. Marquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A 2020. Microglial corpse clearance: lessons from macrophages. Front. Immunol. 11:506
    [Google Scholar]
  86. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A et al. 2016. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:aad8670
    [Google Scholar]
  87. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E et al. 2013. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol. Psychiatry 74:427–35
    [Google Scholar]
  88. Meneses G, Bautista M, Florentino A, Diaz G, Acero G et al. 2016. Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J. Inflamm. 13:33
    [Google Scholar]
  89. Milinkeviciute G, Henningfield CM, Muniak MA, Chokr SM, Green KN, Cramer KS. 2019. Microglia regulate pruning of specialized synapses in the auditory brainstem. Front. Neural Circuits 13:55
    [Google Scholar]
  90. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K et al. 2016. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7:12540
    [Google Scholar]
  91. Monje M. 2018. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41:61–76
    [Google Scholar]
  92. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K et al. 2010. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68:368–76
    [Google Scholar]
  93. Napoli I, Neumann H. 2009. Microglial clearance function in health and disease. Neuroscience 158:1030–38
    [Google Scholar]
  94. Nemes-Baran AD, White DR, DeSilva TM. 2020. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32:108047
    [Google Scholar]
  95. Neumann H, Kotter MR, Franklin RJ. 2009. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–95
    [Google Scholar]
  96. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT et al. 2020. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182:388–403.e15
    [Google Scholar]
  97. Niño DF, Zhou Q, Yamaguchi Y, Martin LY, Wang S et al. 2018. Cognitive impairments induced by necrotizing enterocolitis can be prevented by inhibiting microglial activation in mouse brain. Sci. Transl. Med. 10:eaan0237
    [Google Scholar]
  98. Orlando C, Ster J, Gerber U, Fawcett JW, Raineteau O. 2012. Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J. Neurosci. 32:18009–17
    [Google Scholar]
  99. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58
    [Google Scholar]
  100. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–609
    [Google Scholar]
  101. Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD et al. 2020. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182:625–40.e24
    [Google Scholar]
  102. Pascucci T, Colamartino M, Fiori E, Sacco R, Coviello A et al. 2020. P-cresol alters brain dopamine metabolism and exacerbates autism-like behaviors in the BTBR mouse. Brain Sci. 10:233
    [Google Scholar]
  103. Pavlov VA, Chavan SS, Tracey KJ. 2020. Bioelectronic medicine: from preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment. Cold Spring Harb. Perspect. Med. 10:a034140
    [Google Scholar]
  104. Pecorelli A, Cervellati C, Cordone V, Hayek J, Valacchi G. 2020. Compromised immune/inflammatory responses in Rett syndrome. Free Radic. Biol. Med. 152:100–6
    [Google Scholar]
  105. Punal VM, Paisley CE, Brecha FS, Lee MA, Perelli RM et al. 2019. Large-scale death of retinal astrocytes during normal development is non-apoptotic and implemented by microglia. PLOS Biol. 17:e3000492
    [Google Scholar]
  106. Reshef R, Kudryavitskaya E, Shani-Narkiss H, Isaacson B, Rimmerman N et al. 2017. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. eLife 6:e30809
    [Google Scholar]
  107. Reu P, Khosravi A, Bernard S, Mold JE, Salehpour M et al. 2017. The lifespan and turnover of microglia in the human brain. Cell Rep. 20:779–84
    [Google Scholar]
  108. Rylaarsdam L, Guemez-Gamboa A. 2019. Genetic causes and modifiers of autism spectrum disorder. Front. Cell Neurosci. 13:385
    [Google Scholar]
  109. Salvador AF, de Lima KA, Kipnis J. 2021. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21:526–41
    [Google Scholar]
  110. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167:1469–80.e12
    [Google Scholar]
  111. Sanchack KE, Thomas CA. 2016. Autism spectrum disorder: primary care principles. Am. Fam. Physician 94:972–79
    [Google Scholar]
  112. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705
    [Google Scholar]
  113. Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M et al. 2020. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39:e105380
    [Google Scholar]
  114. Sedel F. 2004. Macrophage-derived tumor necrosis factor, an early developmental signal for motoneuron death. J. Neurosci. 24:2236–46
    [Google Scholar]
  115. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM et al. 2019. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22:374–85
    [Google Scholar]
  116. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB et al. 2019. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101:246–59.e6
    [Google Scholar]
  117. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B et al. 2019. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177:1600–18.e17
    [Google Scholar]
  118. Sierra A, Paolicelli RC, Kettenmann H. 2019. Cien años de microglia: milestones in a century of microglial research. Trends Neurosci. 42:778–92
    [Google Scholar]
  119. Sigal YM, Bae H, Bogart LJ, Hensch TK, Zhuang X. 2019. Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging. PNAS 116:7071–76
    [Google Scholar]
  120. Sipe GO, Lowery RL, Tremblay ME, Kelly EA, Lamantia CE, Majewska AK. 2016. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7:10905
    [Google Scholar]
  121. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  122. Strahan JA, Walker WH 2nd, Montgomery TR, Forger NG 2017. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Dev. Neurobiol. 77:753–66
    [Google Scholar]
  123. Sun CY, Li JR, Wang YY, Lin SY, Ou YC et al. 2020. p-Cresol sulfate caused behavior disorders and neurodegeneration in mice with unilateral nephrectomy involving oxidative stress and neuroinflammation. Int. J. Mol. Sci. 21:6687
    [Google Scholar]
  124. Tan Q, Orsso CE, Deehan EC, Kung JY, Tun HM et al. 2021. Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: a systematic review. Autism Res. 14:1820–36
    [Google Scholar]
  125. Tanida M, Takada M, Kato-Kataoka A, Kawai M, Miyazaki K, Shibamoto T. 2016. Intragastric injection of Lactobacillus casei strain Shirota suppressed spleen sympathetic activation by central corticotrophin-releasing factor or peripheral 2-deoxy-d-glucose in anesthetized rats. Neurosci. Lett. 619:114–20
    [Google Scholar]
  126. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E et al. 2012. Microglia in the cerebral cortex in autism. J. Autism Dev. Disord. 42:2569–84
    [Google Scholar]
  127. Thion MS, Low D, Silvin A, Chen J, Grisel P et al. 2018. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172:500–16.e16
    [Google Scholar]
  128. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J et al. 2013. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16:543–51
    [Google Scholar]
  129. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG et al. 2018. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359:1269–73
    [Google Scholar]
  130. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y et al. 2019. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364:685–89
    [Google Scholar]
  131. Vuong HE, Pronovost GN, Williams DW, Coley EJL, Siegler EL et al. 2020. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586:281–86
    [Google Scholar]
  132. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. 2008. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28:8138–43
    [Google Scholar]
  133. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. 2012. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 57:2096–102
    [Google Scholar]
  134. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL et al. 2018. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9:1228
    [Google Scholar]
  135. Xu X, Miller EC, Pozzo-Miller L. 2014. Dendritic spine dysgenesis in Rett syndrome. Front. Neuroanat. 8:97
    [Google Scholar]
  136. Xu Z-X, Kim GH, Tan J-W, Riso AE, Sun Y et al. 2020. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat. Commun. 11:1797
    [Google Scholar]
  137. Yamaguchi Y, Miura M. 2015a. Programmed cell death and caspase functions during neural development. Curr. Top. Dev. Biol. 114:159–84
    [Google Scholar]
  138. Yamaguchi Y, Miura M. 2015b. Programmed cell death in neurodevelopment. Dev. Cell 32:478–90
    [Google Scholar]
  139. Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. 2017. Advances in understanding the pathophysiology of autism spectrum disorders. Behav. Brain Res. 331:92–101
    [Google Scholar]
  140. Zengeler KE, Lukens JR. 2021. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat. Rev. Immunol. 21:454–68
    [Google Scholar]
  141. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G et al. 2014. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17:400–6
    [Google Scholar]
  142. Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K. 2020. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl. Psychiatry 10:186
    [Google Scholar]
  143. Zhao D, Mokhtari R, Pedrosa E, Birnbaum R, Zheng D, Lachman HM. 2017. Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress. Mol. Autism 8:17
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110920-023056
Loading
/content/journals/10.1146/annurev-neuro-110920-023056
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error