Skip to main content

Advertisement

Log in

Reduced penetrance of an eastern French mutation in ATL1 autosomal-dominant inheritance (SPG3A): extended phenotypic spectrum coupled with brain 18F-FDG PET

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

ATL1-related spastic paraplegia SPG3A is a pure form of hereditary spastic paraplegia. Rare complex phenotypes have been described, but few data concerning cognitive evaluation or molecular imaging of these patients are available. We relate a retrospective collection of patients with SPG3A from the Neurology Department of Nancy University Hospital, France. For each patient were carried out a 18F-FDG PET (positron emission tomography), a electromyography (EMG), a sudoscan®, a cerebral and spinal cord MRI (magnetic resonance imaging) with measurement of cervical and thoracic surfaces, a neuropsychological assessment. The present report outlines standardised clinical and paraclinical data of five patients from two east-France families carrying the same missense pathogenic variation, NM_015915.4(ATL1): c.1483C > T p.(Arg495Trp) in ATL1. Mean age at onset was 14 ± 15.01 years. Semi-quantitatively and in comparison to healthy age-matched subjects, PET scans showed a significant cerebellar and upper or mild temporal hypometabolism in all four adult patients and hypometabolism of the prefrontal cortex or precuneus in three of them. Sudoscan® showed signs of small fibre neuropathy in three patients. Cervical and thoracic patients’ spinal cords were significantly thinner than matched-control, respectively 71 ± 6.59mm2 (p = 0.01) and 35.64 ± 4.35mm2 (p = 0.015). Two patients presented with a dysexecutive syndrome. While adding new clinical and paraclinical signs associated with ATL1 pathogenic variations, we insist here on the variable penetrance and expressivity. We report small fibre neuropathy, cerebellar hypometabolism and dysexecutive syndromes associated with SPG3A. These cognitive impairments and PET findings may be related to a cortico-cerebellar bundle axonopathy described in the cerebellar cognitive affective syndrome (CCAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shribman S, Reid E, Crosby AH, Houlden H, Warner TT (2019) Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 18:1136–1146. https://doi.org/10.1016/S1474-4422(19)30235-2

    Article  CAS  PubMed  Google Scholar 

  2. FaraziFard MA, Rebelo AP, Buglo E, Nemati H, Dastsooz H, Gehweiler I, Reich S, Reichbauer J, Quintáns B, Ordóñez-Ugalde A, Cortese A, Courel S, Abreu L, Powell E, Danzi MC, Martuscelli NB, Bis-Brewer DM, Tao F, Zarei F, Habibzadeh P, Yavarian M, Modarresi F, Silawi M, Tabatabaei Z, Yousefi M, Farpour HR, Kessler C, Mangold E, Kobeleva X, Tournev I, Chamova T, Mueller AJ, Haack TB, Tarnopolsky M, Gan-Or Z, Rouleau GA, Synofzik M, Sobrido M-J, Jordanova A, Schüle R, Zuchner S, Faghihi MA (2019) Truncating mutations in UBAP1 Cause hereditary spastic paraplegia. Am J Human Genet 104:767–773. https://doi.org/10.1016/j.ajhg.2019.03.001

    Article  CAS  Google Scholar 

  3. Ahmed MY, Al-Khayat A, Al-Murshedi F, Al-Futaisi A, Chioza BA, Pedro Fernandez-Murray J, Self JE, Salter CG, Harlalka GV, Rawlins LE, Al-Zuhaibi S, Al-Azri F, Al-Rashdi F, Cazenave-Gassiot A, Wenk MR, Al-Salmi F, Patton MA, Silver DL, Baple EL, McMaster CR, Crosby AH (2017) A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis. Brain 140:547–554. https://doi.org/10.1093/brain/aww318

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vaz FM, McDermott JH, Alders M, Wortmann SB, Kölker S, Pras-Raves ML, Vervaart MAT, van Lenthe H, Luyf ACM, Elfrink HL, Metcalfe K, Cuvertino S, Clayton PE, Yarwood R, Lowe MP, Lovell S, Rogers RC, Study DDD, van Kampen AHC, Ruiter JPN, Wanders RJA, Ferdinandusse S, van Weeghel M, Engelen M, Banka S (2019) Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain 142:3382–3397. https://doi.org/10.1093/brain/awz291

    Article  PubMed  PubMed Central  Google Scholar 

  5. Husain RA, Grimmel M, Wagner M, Hennings JC, Marx C, Feichtinger RG, Saadi A, Rostásy K, Radelfahr F, Bevot A, Döbler-Neumann M, Hartmann H, Colleaux L, Cordts I, Kobeleva X, Darvish H, Bakhtiari S, Kruer MC, Besse A, Ng AC-H, Chiang D, Bolduc F, Tafakhori A, Mane S, GhasemiFirouzabadi S, Huebner AK, Buchert R, Beck-Woedl S, Müller AJ, Laugwitz L, Nägele T, Wang Z-Q, Strom TM, Sturm M, Meitinger T, Klockgether T, Riess O, Klopstock T, Brandl U, Hübner CA, Deschauer M, Mayr JA, Bonnen PE, Krägeloh-Mann I, Wortmann SB, Haack TB (2020) Bi-allelic HPDL variants cause a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia. Am J Human Genet 107:364–373. https://doi.org/10.1016/j.ajhg.2020.06.015

    Article  CAS  Google Scholar 

  6. Nielsen JE, Johnsen B, Koefoed P, Scheuer KH, Grønbech-Jensen M, Law I, Krabbe K, Nørremølle A, Eiberg H, Søndergård H, Dam M, Rehfeld JF, Krarup C, Paulson OB, Hasholt L, Sørensen SA (2004) Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation. Eur J Neurol 11:817–824. https://doi.org/10.1111/j.1468-1331.2004.00888.x

    Article  CAS  PubMed  Google Scholar 

  7. Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H,  Ghaedi H (2019) Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol https://doi.org/10.1007/s00415-019-09633-1.

  8.  Zhao G,  Liu X (2017) Clinical features and genotype-phenotype correlation analysis in patients with ATL1 mutations: A literature reanalysis. Transl Neurodegener 6. https://doi.org/10.1186/s40035-017-0079-3.

  9. Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber CH, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink JK (2001) Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29:326–331. https://doi.org/10.1038/ng758

    Article  CAS  PubMed  Google Scholar 

  10. Park SH, Zhu P-P, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110. https://doi.org/10.1172/JCI40979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mészárosová AU, Grečmalová D, Brázdilová M, Dvořáčková N, Kalina Z, Čermáková M, Vávrová D, Smetanová I, Staněk D, Seeman P (2017) Disease-causing variants in the ATL1 gene are a rare cause of hereditary spastic paraplegia among Czech patients. Ann Hum Genet 81:249–257. https://doi.org/10.1111/ahg.12206

    Article  CAS  PubMed  Google Scholar 

  12. Ming L (2007) SPG3A-hereditary spastin paraplegia with genetic anticipation and incomplete penetrance. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24:15–18

    CAS  PubMed  Google Scholar 

  13. Luo Y, Chen C, Zhan Z, Wang Y, Du J, Hu Z, Liao X, Zhao G, Wang J, Yan X, Jiang H, Pan Q, Xia K, Tang B, Shen L (2014) Mutation and clinical characteristics of autosomal-dominant hereditary spastic paraplegias in China. Neurodegener Dis 14:176–183. https://doi.org/10.1159/000365513

    Article  PubMed  Google Scholar 

  14. Ivanova N, Claeys KG, Deconinck T, Litvinenko I, Jordanova A, Auer-Grumbach M, Haberlova J, Löfgren A, Smeyers G, Nelis E, Mercelis R, Plecko B, Priller J, Zámecník J, Ceulemans B, Erichsen AK, Björck E, Nicholson G, Sereda MW, Seeman P, Kremensky I, Mitev V, De Jonghe P (2007) Hereditary spastic paraplegia 3A associated with axonal neuropathy. Arch Neurol 64:706–713. https://doi.org/10.1001/archneur.64.5.706

    Article  PubMed  Google Scholar 

  15. Schwartzlow C, Kazamel M (2019) Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr Neurol Neurosci Rep 19:52. https://doi.org/10.1007/s11910-019-0974-3

    Article  PubMed  Google Scholar 

  16. Jacinto-Scudeiro LA, Dariva Machado G, Ayres A, Burguêz D, Polese-Bonato M, González-Salazar C, Siebert M, Cavalcante França Jr. M, Olchik MR, Morales Saute JA (2019) Are cognitive changes in hereditary spastic paraplegias restricted to complicated forms?. Front Neurol 10. https://doi.org/10.3389/fneur.2019.00508.

  17. Chamard L, Ferreira S, Pijoff A, Silvestre M, Berger E, Magnin E (2016) Cognitive Impairment Involving Social Cognition in SPG4 Hereditary Spastic Paraplegia. Behav Neurol 2016:6423461. https://doi.org/10.1155/2016/6423461

  18. da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC (2018) Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol 9:1117. https://doi.org/10.3389/fneur.2018.01117

    Article  PubMed  Google Scholar 

  19. Morais S, Raymond L, Mairey M, Coutinho P, Brandão E, Ribeiro P, Loureiro JL, Sequeiros J, Brice A, Alonso I, Stevanin G (2017) Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Hum Genet 25:1217–1228. https://doi.org/10.1038/ejhg.2017.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trummer B, Haubenberger D, Blackstone C (2018) Clinical trial designs and measures in hereditary spastic paraplegias. Front Neurol 9. https://doi.org/10.3389/fneur.2018.01017.

  21. Rabin R, de Charro F (2001) EQ-5D: a measure of health status from the EuroQol Group. Ann Med 33:337–343. https://doi.org/10.3109/07853890109002087

    Article  CAS  PubMed  Google Scholar 

  22. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, Darcourt J, Kapucu OL, Tatsch K, Bartenstein P, Van Laere K, European Association of Nuclear Medicine Neuroimaging Committee (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110. https://doi.org/10.1007/s00259-009-1264-0

    Article  PubMed  Google Scholar 

  23. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  24. Buschke H (1984) Cued recall in amnesia. J Clin Neuropsychol 6:433–440. https://doi.org/10.1080/01688638408401233

    Article  CAS  PubMed  Google Scholar 

  25. Grober E, Buschke H, Crystal H, Bang S, Dresner R (1988) Screening for dementia by memory testing. Neurology 38:900–903. https://doi.org/10.1212/wnl.38.6.900

    Article  CAS  PubMed  Google Scholar 

  26. Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B (1996) Revision of the brief visuospatial memory test: studies of normal performance, reliability, and validity. Psychol Assess 8:145–153. https://doi.org/10.1037/1040-3590.8.2.145

    Article  Google Scholar 

  27. Benton AL, Varney NR, deSHamsher K (1978) Visuospatial judgment: a clinical test. Arch Neurol 35:364–367. https://doi.org/10.1001/archneur.1978.00500300038006

    Article  CAS  PubMed  Google Scholar 

  28. Deloche G, Hannequin D,  Dordain M, Metz-Lutz MN, Kremin H, Tessier C, Vendrell J, Cardebat D, Perrier D, Quint S, Pichard B (1997) Diversity of patterns of improvement in confrontation naming rehabilitation: some tentative hypotheses. J Commun Disord 30:11–21; quiz 21–22. https://doi.org/10.1016/0021-9924(95)00054-2.

  29. Mahieux-Laurent F, Fabre C, Galbrun E, Dubrulle A, Moroni C (2009) Validation d’une batterie brève d’évaluation des praxies gestuelles pour consultation mémoire. évaluation chez 419 témoins, 127 patients atteints de troubles cognitifs légers et 320 patients atteints d’une démence. [Validation of a brief screening scale evaluating praxic abilities for use in memory clinics. Evaluation in 419 controls, 127 mild cognitive impairment and 320 demented patients]. Revue Neurologique 165:560–567. https://doi.org/10.1016/j.neurol.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  30. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626. https://doi.org/10.1212/wnl.55.11.1621

    Article  CAS  PubMed  Google Scholar 

  31. Llinàs-Reglà J, Vilalta-Franch J, López-Pousa S, Calvó-Perxas L, Torrents Rodas D, Garre-Olmo J (2017) The Trail Making Test. Assessment 24:183–196. https://doi.org/10.1177/1073191115602552

    Article  PubMed  Google Scholar 

  32. Periáñez JA, Lubrini G, García-Gutiérrez A, Ríos-Lago M (2021) Construct validity of the stroop color-word test: influence of speed of visual search, verbal fluency, working memory, cognitive flexibility, and conflict monitoring. Arch Clin Neuropsychol 36:99–111. https://doi.org/10.1093/arclin/acaa034

    Article  PubMed  Google Scholar 

  33. TY - CHAP AU - Valentine, Thomas AU - Block, Cady AU - Eversole, Kara AU - Boxley, Laura AU - Dawson, Erica PY - 2020/09/18 SP - SN - 9781118970744 T1 - Wechsler Adult Intelligence Scale-IV (WAIS-IV) ER -

  34. TY - BOOK AU - Godefroy, Olivier AU - GREFEX PY - 2008/01/01 SP - T1 - Fonctions exécutives et pathologies neurologiques et psychiatriques ER -

  35. The SEA (Social cognition and Emotional Assessment): a clinical neuropsychological tool for early diagnosis of frontal variant of frontotemporal lobar degeneration - PubMed, (n.d.). https://pubmed-ncbi-nlm-nih-gov.bases-doc.univ-lorraine.fr/21895376/ (accessed October 17, 2020).

  36. Bertoux M, Delavest M, de Souza LC, Funkiewiez A, Lépine JP, Fossati P, Dubois B, Sarazin M (2012) Social Cognition and Emotional Assessment differentiates frontotemporal dementia from depression. J Neurol Neurosurg Psychiatry 83(4):411–6.  https://doi.org/10.1136/jnnp-2011-301849

  37. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571. https://doi.org/10.1001/archpsyc.1961.01710120031004

    Article  CAS  PubMed  Google Scholar 

  38. Vinik AI, Smith AG, Singleton JR, Callaghan B, Freedman BI, Tuomilehto J, Bordier L, Bauduceau B, Roche F (2016) Normative values for electrochemical skin conductances and impact of ethnicity on quantitative assessment of sudomotor function. Diabetes Technol Ther 18:391–398. https://doi.org/10.1089/dia.2015.0396

    Article  PubMed  Google Scholar 

  39. Mustafa MI, Murshed NS, Abdelmoneim AH, Abdelmageed MI, Elfadol NM, Makhawi AM (2020) Extensive In Silico Analysis of ATL1 Gene : Discovered Five Mutations That May Cause Hereditary Spastic Paraplegia Type 3A. Scientifica (Cairo) 2020:8329286. https://doi.org/10.1155/2020/8329286

  40. Dürr A, Camuzat A, Colin E, Tallaksen C, Hannequin D, Coutinho P, Fontaine B, Rossi A, Gil R, Rousselle C, Ruberg M, Stevanin G, Brice A (2004) Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Arch Neurol 61:1867–1872. https://doi.org/10.1001/archneur.61.12.1867

    Article  PubMed  Google Scholar 

  41. Yan Y-T, Wei Q, Zheng Y, Luo W-J, Dong H-L, Lu C, Zhang J, Chen M-J, Bao Y-X, Li H-F (2019) Clinical and genetic characterization of a cohort of Chinese patients with hereditary spastic paraplegia. Clin Genet 95:637–639. https://doi.org/10.1111/cge.13517

    Article  CAS  PubMed  Google Scholar 

  42. Scheuer KH, Nielsen JE, Krabbe K, Simonsen C, Koefoed P, Sørensen SA, Gade A, Paulson OB, Law I (2005) Reduced regional cerebral blood flow in SPG4-linked hereditary spastic paraplegia. J Neurol Sci 235:23–32. https://doi.org/10.1016/j.jns.2005.03.051

    Article  CAS  PubMed  Google Scholar 

  43. Terada T, Kono S, Ouchi Y, Yoshida K, Hamaya Y, Kanaoka S, Miyajima H (2013) SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism. Ann Nucl Med 27:303–308. https://doi.org/10.1007/s12149-012-0673-5

    Article  CAS  PubMed  Google Scholar 

  44. Faber I, Branco LMT, FrançaJúnior MC (2016) Cognitive dysfunction in hereditary spastic paraplegias and other motor neuron disorders. Dement Neuropsychol 10:276–279. https://doi.org/10.1590/s1980-5764-2016dn1004004

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu P-P, Soderblom C, Tao-Cheng J-H, Stadler J, Blackstone C (2006) SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum Mol Genet 15:1343–1353. https://doi.org/10.1093/hmg/ddl054

    Article  CAS  PubMed  Google Scholar 

  46. Yalçın B, Zhao L, Stofanko M, O’Sullivan NC, Kang ZH, Roost A, Thomas MR, Zaessinger S, Blard O, Patto AL, Sohail A, Baena V, Terasaki M, O’Kane CJ (2017) Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. Elife 6:e23882. https://doi.org/10.7554/eLife.23882

    Article  PubMed  PubMed Central  Google Scholar 

  47. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA, Daga A (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin. Nature 460:978–983. https://doi.org/10.1038/nature08280

    Article  CAS  PubMed  Google Scholar 

  48. Liu X, Guo X, Niu L, Li X, Sun F, Hu J, Wang X, Shen K (2019) Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites. Nat Commun 10:568. https://doi.org/10.1038/s41467-019-08478-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanderson CM, Connell JW, Edwards TL, Bright NA, Duley S, Thompson A, Luzio JP, Reid E (2006) Spastin and atlastin, two proteins mutated in autosomal dominant hereditary spastic paraplegia, are binding partners. Hum Mol Genet 15:307–318. https://doi.org/10.1093/hmg/ddi447

    Article  CAS  PubMed  Google Scholar 

  50. Zhu P-P, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003) Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 278:49063–49071. https://doi.org/10.1074/jbc.M306702200

    Article  CAS  PubMed  Google Scholar 

  51. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579. https://doi.org/10.1093/brain/121.4.561

    Article  PubMed  Google Scholar 

  52. Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19:2485–2497. https://doi.org/10.1093/cercor/bhp135

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD (2018) The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 141:248–270. https://doi.org/10.1093/brain/awx317

    Article  PubMed  Google Scholar 

  54. Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W (2014) Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13:386–410. https://doi.org/10.1007/s12311-013-0540-5

    Article  PubMed  PubMed Central  Google Scholar 

  55. Al-Maawali A, Rolfs A, Klingenhaeger M, Yoon G (2011) Hereditary spastic paraplegia associated with axonal neuropathy: a novel mutation of SPG3A in a large family. J Clin Neuromuscul Dis 12:143–146. https://doi.org/10.1097/CND.0b013e318209efc6

    Article  PubMed  Google Scholar 

  56. Fusco C, Frattini D, Farnetti E, Nicoli D, Casali B, Fiorentino F, Nuccitelli A, Giustina ED (2010) Hereditary spastic paraplegia and axonal motor neuropathy caused by a novel SPG3A de novo mutation. Brain Develop 32:592–594. https://doi.org/10.1016/j.braindev.2009.08.003

    Article  Google Scholar 

  57. Scarano V, Mancini P, Criscuolo C, De Michele G, Rinaldi C, Tucci T, Tessa A, Santorelli FM, Perretti A, Santoro L, Filla A (2005) The R495W mutation in SPG3A causes spastic paraplegia associated with axonal neuropathy. J Neurol 252:901–903. https://doi.org/10.1007/s00415-005-0768-1

    Article  CAS  PubMed  Google Scholar 

  58. Fabry V, Gerdelat A, Acket B, Cintas P, Rousseau V, Uro-Coste E, Evrard SM, Pavy-Le Traon A. Which Method for Diagnosing Small Fiber Neuropathy? Front Neurol 11:342. https://doi.org/10.3389/fneur.2020.00342

  59. Hedera P, Eldevik OP, Maly P, Rainier S, Fink JK (2005) Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 47:730–734. https://doi.org/10.1007/s00234-005-1415-3

    Article  CAS  PubMed  Google Scholar 

  60. Varga RE, Schüle R, Fadel H, Valenzuela I, Speziani F, Gonzalez M, Rudenskaia G, Nürnberg G, Thiele H, Altmüller J, Alvarez V, Gamez J, Garbern JY, Nürnberg P, Zuchner S, Beetz C (2013) Do not trust the pedigree: reduced and sex-dependent penetrance at a novel mutation hotspot in ATL1 blurs autosomal dominant inheritance of spastic paraplegia. Hum Muta 34(6):860–3. https://doi.org/10.1002/humu.22309

  61. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, Bolduc V, Waddell LB, Sandaradura SA, O'Grady GL, Estrella E, Reddy HM, Zhao F, Weisburd B, Karczewski KJ, O'Donnell-Luria AH, Birnbaum D, Sarkozy A, Hu Y, Gonorazky H, Claeys K, Joshi H, Bournazos A, Oates EC, Ghaoui R, Davis MR, Laing NG, Topf A (2017) Genotype-Tissue Expression Consortium, Kang PB, Beggs AH, North KN, Straub V, Dowling JJ, Muntoni F, Clarke NF, Cooper ST, Bönnemann CG, MacArthur DG. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 9(386):eaal5209.  https://doi.org/10.1126/scitranslmed.aal5209

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Renaud.

Ethics declarations

Ethics approval

The study was approved by the local ethics committee.

Consent to participate

Written informed consent was obtained from all individuals contributing a blood sample for molecular investigations and the local ethics committees approved the study. A distinct consent form was also signed if videos were recorded.

Consent for publication

The final manuscript has been read and approved by all authors who accepted full responsibility for the design and undertaking of the original article. They had access to the data and co ntrolled the decision to publish.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RTF 9.28 MB)

Supplementary file2 (MP4 7354 KB)

Supplementary file3 (MP4 5787 KB)

Appendix

Appendix

Table 3 Nerve conduction studies
Table 4 Individual patient areas compared to group control
Fig. 6
figure 6

ATL1 Gene expression. Data obtained from the NIH Genotype-Tissue Expression (GTEx) project. Data Source: GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)

Fig. 7
figure 7

Pes cavus (patient 3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocquel, A., Ravel, JM., Lambert, L. et al. Reduced penetrance of an eastern French mutation in ATL1 autosomal-dominant inheritance (SPG3A): extended phenotypic spectrum coupled with brain 18F-FDG PET. Neurogenetics 23, 241–255 (2022). https://doi.org/10.1007/s10048-022-00695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-022-00695-4

Keywords

Navigation