Skip to main content
Log in

Physical Methods of Processing the Melts of Metal Matrix Composites: Current State and Prospects

  • FOUNDRY
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This review is devoted to known theoretical and experimental results in the field of using physical methods for processing melts in the preparation of metal matrix composite materials in conditions of casting and metallurgical technological processes. The possibilities, advantages, and disadvantages of various methods of physical influences are considered from the standpoint of their influence on the structural and morphological characteristics and physicomechanical and operational properties of cast composite materials based on aluminum and its alloys. A classification is presented and a detailed description of physical methods for processing melts when obtaining metal matrix composites is presented, depending on the state of the melt during the processing period (during melting, pouring, and crystallization) and according to the physical principle of imposed effects (thermal, electromagnetic, cavitation, mechanical, and others). The modern concepts of the laws and mechanisms of the influence of the processing of the melt by physical methods on the processes of structure and phase formation of metal matrix composites in the cast state are presented. From a qualitative and quantitative point of view, the currently known effects of exposure to the structure of composites are described, in particular, those associated with a change in the wettability of particles, their distribution, dispersion, and morphology, as well as with a change in the structural state of the matrix material. Data on the physicomechanical, operational, and technological properties of metal matrix composites obtained with the use of physical effects on the melt during melting and crystallization are systematized. The prospects for the development and practical application of methods of physical effects on melts in the production of metal matrix composites based on various matrix materials and reinforcement systems, including endogenously reinforced, exogenously reinforced, and complex-reinforced composite materials, are shown. Priority areas of theoretical research and experimental development are discussed; areas of discussion and issues in the field of obtaining metal matrix composites using physical effects on melts during melting and crystallization are revealed. On the basis of a systematic analysis of the key problems that limit the widespread industrial use of physical methods for processing melts, areas for future research in this direction are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Xue, D., Balachandran, P., Hogden, J., Theiler, J., Xue, D., and Lookman, T., Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 2016, vol. 7, article no. 11241. https://doi.org/10.1038/ncomms11241

    Article  CAS  Google Scholar 

  2. Srinivasan, S., Broderick, S.R., Zhang, R., Mishra, A., Sinnott, S.B., Saxena, S.K., LeBeau, J.M., and Rajan, K., Mapping chemical selection pathways for designing multicomponent alloys: an informatics framework for materials design, Sci. Rep., 2015, vol. 5, article no. 17960. https://doi.org/10.1038/srep17960

    Article  CAS  Google Scholar 

  3. Vojtech, D., Challenges for research and development of new aluminum alloys, Metalurgija, 2010, vol. 49, no. 3, pp. 181–185.

    CAS  Google Scholar 

  4. Mortensen, A. and Llorca, J., Metal matrix composites, Annu. Rev. Mater. Res., 2010, vol. 40, no. 1, pp. 243–270. https://doi.org/10.1146/annurev-matsci-070909-104511

    Article  CAS  Google Scholar 

  5. Rohatgi, P.K., Ajay Kumar, P., Chelliah, N.M., and Rajan, T.P.D., Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future, JOM, 2020, vol. 72, no. 8, pp. 2912–2926. https://doi.org/10.1007/s11837-020-04253-x

    Article  CAS  Google Scholar 

  6. Mavhungu, S.T., Akinlabi, E.T., Onitiri, M.A., and Varachia, F.M., Aluminum matrix composites for industrial use: Advances and trends, Procedia Manuf., 2017, vol. 7, pp. 178–182. https://doi.org/10.1016/j.promfg.2016.12.045

    Article  Google Scholar 

  7. Samal, P., Vundavilli, P.R., Meher, A., and Mahapatra, M.M., Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties, J. Manuf. Processes, 2020, vol. 59, pp. 131–152. https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  8. Sijo, M.T. and Jayadevan, K.R., Analysis of stir cast aluminium silicon carbide metal matrix composite: A comprehensive review, Procedia Technol., 2016, vol. 24, pp. 379–385. https://doi.org/10.1016/j.protcy.2016.05.052

    Article  Google Scholar 

  9. Pramanik, S., Cherusseri, J., Baban, N.S., Sowntharya, L., and Kar, K.K., Metal matrix composites: Theory, techniques, and applications, in Composite Materials, Kar, K., Ed., Berlin, Heidelberg: Springer, 2017, pp. 369–411. https://doi.org/10.1007/978-3-662-49514-8_11

    Book  Google Scholar 

  10. Singh, L., Singh, B., and Saxena, K.K., Manufacturing techniques for metal matrix composites (MMC): An overview, Adv. Mater. Processes Technol., 2020, vol. 6, no. 2, pp. 441–457. https://doi.org/10.1080/2374068X.2020.1729603

    Article  Google Scholar 

  11. Parikh, V.K., Badheka, V.J., Badgujar, A.D., and Ghetiya, N.D., Fabrication and processing of aluminum alloy metal matrix composites, Mater. Manuf. Processes, 2021, vol. 36, no. 14, pp. 1604–1617. https://doi.org/10.1080/10426914.2021.1914848

    Article  CAS  Google Scholar 

  12. Kandpal, B.C., Kumar, J., and Singh, H., Manufacturing and technological challenges in stir casting of metal matrix composites: A Review, Mater. Today: Proc., 2018, vol. 5, no. 1, pp. 5–10. https://doi.org/10.1016/j.matpr.2017.11.046

    Article  CAS  Google Scholar 

  13. Suthar, J. and Patel, K.M., Processing issues, machining, and applications of aluminum metal matrix composites, Mater. Manuf. Processes, 2018, vol. 33, no. 5, pp. 499–527. https://doi.org/10.1080/10426914.2017.1401713

    Article  CAS  Google Scholar 

  14. Madhukar, P., Selvaraj, N., Rao, C.S.P., and Mishra, S.K., Fabrication of light weight metal matrix nanocomposites using ultrasonic cavitation process: A state of review, Mater. Sci. Forum, 2019, vol. 969, pp. 882–888. https://doi.org/10.4028/www.scientific.net/msf.969.882

  15. Jiao, L., Zhao, Y.T., Wang, X.L., Wu, Y., Yang, S.N., and Li, K.N., The research progress of the in situ metal matrix composites, Key Eng. Mater., 2013, vols. 575–576, pp. 137–141. https://doi.org/10.4028/www.scientific.net/kem.575-576.137

  16. David Raja Selvam, J., Dinaharan, I., Vibin Philip, S., and Mashinini, P.M., Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2 + Al2O3) hybrid aluminum matrix composites, J. Alloys Compd., 2018, vol. 740, pp. 529–535. https://doi.org/10.1016/j.jallcom.2018.01.016

    Article  CAS  Google Scholar 

  17. Panfilov, A. and Prusov, E., Current state and trends of development of aluminum matrix composite alloys, Proc. 22nd Int. Conference on Metallurgy and Materials (METAL 2013), Brno, 2013, pp. 1195–1199.

  18. Pramod, S.L., Bakshi, S.R., and Murty, B.S., Aluminum-based cast in situ composites: A Review, J. Mater. Eng. Perform., 2015, vol. 24, pp. 2185–2207. https://doi.org/10.1007/s11665-015-1424-2

    Article  CAS  Google Scholar 

  19. Prusov, E.S. and Panfilov, A.A., Properties of cast aluminum-based composite alloys reinforced by endogenous and exogenous phases, Russ. Metall. (Engl. Transl.), 2011, no. 7, pp. 670–674. https://doi.org/10.1134/S0036029511070123

  20. Deev, V.B., Prusov, E.S., and Kutsenko, A.I., Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods, Metall. Ital., 2018, vol. 110, no. 2, pp. 16–24.

    Google Scholar 

  21. Selyanin, I.F., Deev, V.B., Belov, N.A., Prikhodko, O.G., and Ponomareva, K.V., Physical modifying effects and their influence on the crystallization of casting alloys, Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 4, pp. 434–436. https://doi.org/10.3103/S1067821215040197

    Article  Google Scholar 

  22. Deev, V.B., Selyanin, I.F., Kutsenko, A.I., Belov, N.A., and Ponomareva, K.V., Promising resource saving technology for processing melts during production of cast aluminum alloys, Metallurgist, 2015, vol. 58, pp. 1123–1127. https://doi.org/10.1007/s11015-015-0050-4

    Article  CAS  Google Scholar 

  23. Deev, V., Prusov, E., and Rakhuba, E., Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application, Mater. Sci. Forum., 2019, vol. 946, pp. 655–660. https://doi.org/10.4028/www.scientific.net/MSF.946.655

  24. Babu, N.H., Fan, Z., and Eskin, D.G., Application of external fields to technology of metal-matrix composite materials, Proc. TMS 2013 Annual Meeting, San Antonio, TX, March 3–7, 2013, TMS/Wiley, 2013, pp. 1037–1044.

  25. Djan, E., Madam, S.V., Babu, N.H., Tamayo-Ariztondo, J., Eskin, D.G., and Fan, Z., Processing of metal matrix composites under external fields and their application as grain refiner, in Light Metals, Grandfield, J., Ed., Springer, 2014, pp. 1401–1404.

    Google Scholar 

  26. Bazin, Yu.A., Kurbatov, V.N., and Baum, B.A., X-ray diffraction study of short-range structure in liquid lead, Rasplavy, 1999, vol. 1, pp. 14–17.

    Google Scholar 

  27. Amati, M., Balijepalli, S.K., Mezzi, A., Kaciulis, S., Montanari, R., and Varone, A., Temperature dependent phenomena in liquid LBE alloy, Mater. Sci. Forum, 2017, vol. 884, pp. 41–52. https://doi.org/10.4028/www.scientific.net/msf.884.41

  28. Popel’, P.S., Sidorov, V.E., Calvo-Dahlborg, M., Dahlborg, U., and Molokanov, V.V., Effect of heat treatment of a liquid alloy on its properties in the molten state and after amorphization, Russ. Metall. (Engl. Transl.), 2021, no. 2, pp. 88–101. https://doi.org/10.1134/S0036029521020208

  29. Chikova, O.A., Vyukhin, V.V., and Tsepelev, V.S., Influence of melt superheating treatment on the cast structure of Al-Sn alloys, Russ. J. Non-Ferrous Met., 2021, vol. 62, no. 3, pp. 286–292. https://doi.org/10.3103/S106782122103007X

    Article  Google Scholar 

  30. Deev, V.B., Prusov, E.S., Vdovin, K.N., Bazlova, T.A., and Temlyantsev, M.V., Influence of melting unit type on the properties of middle-carbon cast steel, ARPN J. Eng. Appl. Sci., 2018, vol. 13, pp. 998–1001.

    CAS  Google Scholar 

  31. Wang, Q.L., Geng, H.R., Zhuo, M., Long, F., and Peng, X., Effects of melt thermal rate treatment and modification of P and RE on hypereutectic Al–Si–Cu–Mg alloy, Mater. Sci. Technol., 2013, vol. 29, pp. 1233–1240. https://doi.org/10.1179/1743284713Y.0000000267

    Article  CAS  Google Scholar 

  32. Wang, Q., Geng, H., Zhang, S., Jiang, H., and Zuo, M., Effects of melt thermal-rate treatment on Fe-containing phases in hypereutectic Al-Si alloy, Metall. Mater. Trans. A, 2014, vol. 45, pp. 1621–1630. https://doi.org/10.1007/s11661-013-2081-4

    Article  CAS  Google Scholar 

  33. Wang, Q., Zhang, S., Zhang, Z., Yan, X., and Geng, H., Study of melt thermal-rate treatment and low-temperature pouring on Al–15% Si alloy, JOM, 2013, vol. 65, no. 8, pp. 958–966. https://doi.org/10.1007/s11837-013-0657-5

    Article  Google Scholar 

  34. Deev, V., Prusov, E., Ri, E., Prihodko, O., Smetanyuk, S., Chen, X., and Konovalov, S., Effect of melt overheating on structure and mechanical properties of Al–Mg–Si cast alloy, Metals, 2021, vol. 11, no. 9, article no. 1353. https://doi.org/10.3390/met11091353

    Article  CAS  Google Scholar 

  35. Chen, H., Jie, J., Fu, Y., Ma, H., and Li, T., Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation, Trans. Nonferrous Met. Soc. China, 2014, vol. 24, no. 5, pp. 1295–1300. https://doi.org/10.1016/S1003-6326(14)63191-5

    Article  CAS  Google Scholar 

  36. Zhang, Y., Cheng, X., Zhong, H., Xu, Z., Li, L., Gong, Y., Miao, X., Song, C., and Zhai, Q., Comparative study on the grain refinement of Al-Si alloy solidified under the impact of pulsed electric current and travelling magnetic field, Metals, 2016, vol. 6, no. 7, article no. 170. https://doi.org/10.3390/met6070170

    Article  Google Scholar 

  37. Timoshkin, I.Yu., Nikitin, K.V., Nikitin, V.I., and Deev, V.B., Influence of treatment of melts by electromagnetic acoustic fields on the structure and properties of alloys of the Al-Si system, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 5, pp. 419–423. https://doi.org/10.3103/S1067821216050163

    Article  Google Scholar 

  38. Arkulis, M., Logunova, O., and Dolgushin, D., Influence of magnetic field on formation of short range order regions in liquid metals: Fluctuation hypothesis, Key Eng. Mater., 2018, vol. 777, pp. 316–321. https://doi.org/10.4028/www.scientific.net/kem.777.316

  39. Deev, V., Ri, E., and Prusov, E., Mechanism of influence of nanosecond electromagnetic pulses on crystallization behavior of aluminum alloys, Proc. 27th Int. Conference on Metallurgy and Materials, Brno, 2018, Ostrava: Tanger Ltd., 2018, pp. 1363–1369.

  40. Zhang, Y., Rabiger, D., Willers, B., and Eckert, S., The effect of pulsed electrical currents on the formation of macrosegregation in solidifying Al–Si hypoeutectic phases, Int. J. Cast Met. Res., 2016, vol. 30, pp. 13–19. https://doi.org/10.1080/13640461.2016.1174455

    Article  CAS  Google Scholar 

  41. Gromov, V.E., Ivanov, Yu.F., Stolboushkina, O.A., and Konovalov, S.V., Dislocation substructure evolution on Al creep under the action of the weak electric potential, Mater. Sci. Eng., A, 2010, vol. 527, no. 3, pp. 858–861. https://doi.org/10.1016/j.msea.2009.10.045

    Article  CAS  Google Scholar 

  42. Zuev, L.B., Danilov, V.I., Konovalov, S.V., Filip’ev, R.A., and Gromov, V.E., Influence of contact potential difference and electric potential on the microhardness of metals, Phys. Solid State, 2009, vol. 51, no. 6, pp. 1137–1141. https://doi.org/10.1134/S1063783409060092

    Article  CAS  Google Scholar 

  43. Wang, X.J., Luo, X.X., Cong, F.G., and Cui, J.Z., Research progress of microstructure control for aluminium solidification process, Chin. Sci. Bull., 2013, vol. 58, nos. 4–5, pp. 468–473. https://doi.org/10.1007/s11434-012-5585-1

    Article  CAS  Google Scholar 

  44. Zhao, Z., Liu, Y., and Liu, L., Grain refinement induced by a pulsed magnetic field and synchronous solidification, Mater. Manuf. Processes, 2011, vol. 26, no. 9, pp. 1202–1206. https://doi.org/10.1080/10426914.2011.564251

    Article  CAS  Google Scholar 

  45. Deev, V., Ri, E., Prusov, E., Ermakov, M., and Slavinskaya, N., Structure formation of cast Al–Mg–Si alloys during the melts irradiation with nanosecond electromagnetic pulses, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 1001, article no. 012054. https://doi.org/10.1088/1757-899X/1001/1/012054

  46. Kaldre, I. and Bojarevičs, A., Electromagnetic contactless method for metal matrix composite production, Magnetohydrodynamics, 2020, vol. 56, nos. 2–3, pp. 325–331. https://doi.org/10.22364/mhd.56.2-3.24

    Article  Google Scholar 

  47. Zhang, L., Li, W., Yao, J.P., and Qiu, H., Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry, Mater. Lett., 2012, vol. 66, no. 1, pp. 190–192. https://doi.org/10.1016/j.matlet.2011.08.001

    Article  CAS  Google Scholar 

  48. Bai, Q.-W., Ma, Y.-L., Xing, S.-Q., Feng, Y.-F., Bao, X.-Y., and Yu, W.-X., Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing, Gongcheng Kexue Xuebao/Chin. J. Eng., 2017, vol. 39, no. 12, pp. 1828–1834. https://doi.org/10.13374/j.issn2095-9389.2017.12.008

    Article  CAS  Google Scholar 

  49. Liotti, E., Lui, A., Vincent, R., Kumar, S., Guo, Z., Connolley, T., Dolbnya, I.P., Hart, M., Arnberg, L., Mathiesen, R.H., and Grant, P.S., A synchrotron X‑ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy, Acta Mater., 2014, vol. 70, pp. 228–239. https://doi.org/10.1016/j.actamat.2014.02.024

    Article  CAS  Google Scholar 

  50. Bai, Q., Wang, J., Xing, S., Ma, Y., and Bao, X., Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field, Sci. Rep., 2020, vol. 10, article no. 10603. https://doi.org/10.1038/s41598-020-67352-4

    Article  CAS  Google Scholar 

  51. Gong, Y.-Y., Luo, J., Jing, J.-X., Xia, Z.-Q., and Zhai, Q.-J., Structure refinement of pure aluminum by pulse magneto-oscillation, Mater. Sci. Eng., A, 2008, vol. 497, nos. 1–2, pp. 147–152. https://doi.org/10.1016/j.msea.2008.06.027

    Article  CAS  Google Scholar 

  52. Zi, B.-T., Ba, Q.-X., Cui, J.-Z., Bai, Y.-G., and Na, X.-J., Effect of strong pulsed electromagnetic field on metal’s solidified structure, Wuli Xuebao/ Acta Phys. Sin., 2000, vol. 49, no. 5, pp. 1013–1014.

    Google Scholar 

  53. Ban, C.Y., Cui, J.Z., Ba, Q.X., Lu, G.M., and Zhang, B.J., Influence of pulsed magnetic field on microstructure and macro-segregation in 2024 Al-alloy, Acta Metall. Sin. (Engl. Lett.), 2002, vol. 15, no. 4, pp. 380–384.

  54. Vdovin, K.N., Dubsky, G.A., Deev, V.B., Egorova, L.G., Nefediev, A.A., and Prusov, E.S. Influence of a magnetic field on structure formation during the crystallization and physic mechanical properties of aluminum alloys, Russ. J. Non-Ferrous Met., 2019, vol. 60, no. 3, pp. 247–252. https://doi.org/10.3103/S1067821219030155

    Article  Google Scholar 

  55. Zhang, L., Zhan, W., Jin, F., and Zhou, Q., Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field, Mater. Sci. Technol., 2018, vol. 34, no. 6, pp. 698–702. https://doi.org/10.1080/02670836.2017.1410925

    Article  CAS  Google Scholar 

  56. Eskin, D.G., Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook, Mater. Sci. Technol., 2017, vol. 33, no. 6, pp. 636–645. https://doi.org/10.1080/02670836.2016.1162415

    Article  CAS  Google Scholar 

  57. Sardar, S., Karmakar, S.K., and Das, D., Ultrasonic cavitation based processing of metal matrix nanocomposites: An overview, Adv. Mater. Res., 2014, vol. 1042, pp. 58–64. https://doi.org/10.4028/www.scientific.net/amr.1042.58

  58. Liu, Z., Xie, M., and Liu, X.M., Microstructure and properties of in situ Al-Si-Mg2Si composite prepared by melt superheating, Appl. Mech. Mater., 2011, vol. 52, pp. 750–754. https://doi.org/10.4028/www.scientific.net/AMM.52-54.750

  59. Wang, F., Eskin, D., Mi, J., Connolley, T., Lindsay, J., and Mounib, M., A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state, Acta Mater., 2016, vol. 116, pp. 354–363. https://doi.org/10.1016/j.actamat.2016.06.056

    Article  CAS  Google Scholar 

  60. Wang, H.M., Zhao, B., He, Y.Q., Zhao, Y.N., Li, G.R., and Zhang, Z., Effect of electromagnetic stirring on microstructure of in situ synthesized (Al2O3+Al3Zr)P/Al composites, Adv. Mater. Res., 2011, vols. 284–286, pp. 94–97. https://doi.org/10.4028/www.scientific.net/amr.284-286.94

  61. Vorozhtsov, S., Kudryashova, O., Promakhov, V., Dammer, V., and Vorozhtsov, A., Theoretical and experimental investigations of the process of vibration treatment of liquid metals containing nanoparticles, JOM, 2016, vol. 68, pp. 3094–3100. https://doi.org/10.1007/s11837-016-2147-z

    Article  CAS  Google Scholar 

  62. Prusov, E.S., Panfilov, A.A., and Kechin, V.A., Role of powder precursors in production of composite alloys using liquid-phase methods, Russ. J. Non-Ferrous Met., 2017, vol. 58, pp. 308–316. https://doi.org/10.3103/S1067821217030154

    Article  Google Scholar 

  63. Malaki, M., Fadaei Tehrani, A., Niroumand, B., and Gupta, M., Wettability in metal matrix composites, Metals, 2021, vol. 11, no. 7, article no. 1034. https://doi.org/10.3390/met11071034

    Article  CAS  Google Scholar 

  64. Cong, X., Shen, P., Wang, Y., and Jiang, Q., Wetting of polycrystalline SiC by molten Al and Al–Si alloys, Appl. Surf. Sci., 2014, vol. 317, pp. 140–146. https://doi.org/10.1016/j.apsusc.2014.08.055

    Article  CAS  Google Scholar 

  65. Carotenuto, G., Gallo, A., and Nicolais, L., Degradation of SiC particles in aluminium-based composites, J. Mater. Sci., 1994, vol. 29, pp. 4967–4974.

    Article  CAS  Google Scholar 

  66. Nordin, N.A., Abubakar, T.A., Hamzah, E., Farahany, S., and Ourdjini, A., Effect of superheating melt treatment on Mg2Si particulate reinforced in Al–Mg2Si–Cu in situ composite, Procedia Eng., 2017, vol. 184, pp. 595–603. https://doi.org/10.1016/j.proeng.2017.04.144

    Article  CAS  Google Scholar 

  67. Qin, Q.D., Zhao, Y.G., Liang, Y.H., and Zhou, W., Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite, J. Alloys Compd., 2005, vol. 399, nos. 1–2, pp. 106–109. https://doi.org/10.1016/j.jallcom.2005.03.015

    Article  CAS  Google Scholar 

  68. Li, Y., Shang, H., Ma, B., Guo, X., Li, R., and Li, G., The effect of temperature and sputtered particles on the wettability of Al/Al2O3, Materials, 2021, vol. 14, no. 9, article no. 2110. https://doi.org/10.3390/ma14092110

    Article  CAS  Google Scholar 

  69. Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., and Trelkat, J.F., Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Bol. Soc. Esp. Ceram. Vidrio, 2017, vol. 56, no. 2, pp. 47–54. https://doi.org/10.1016/j.bsecv.2016.10.001

    Article  CAS  Google Scholar 

  70. Casati, R. and Vedani, M., Metal matrix composites reinforced by nano-particles: A review, Metals, 2014, vol. 4, no. 1, pp. 65–83. https://doi.org/10.3390/met4010065

    Article  CAS  Google Scholar 

  71. Liotti, E., Lui, A., Vincent, R., Kumar, S., Guo, Z., Connolley, T., Dolbnya, I.P., Hart, M., Arnberg, L., Mathiesen, R.H., and Grant, P.S., A synchrotron X‑ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy, Acta Mater., 2014, vol. 70, pp. 228–239. https://doi.org/10.1016/j.actamat.2014.02.024

    Article  CAS  Google Scholar 

  72. Agrawal, S., Ghose, A.K., and Chakrabarty, I., Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites, Mater. Des., 2017, vol. 113, pp. 195–206. https://doi.org/10.1016/j.matdes.2016.10.007

    Article  CAS  Google Scholar 

  73. Watson, I.G., Forster M.F., Lee, P.D., Dashwood, R.J., Hamilton, R.W., and Chirazi, A. Investigation of the clustering behaviour of titanium diboride particles in aluminium, Composites, Part A, 2005, vol. 36, no. 9, pp. 1177–1187. https://doi.org/10.1016/j.compositesa.2005.02.003

    Article  CAS  Google Scholar 

  74. Youssef, Y.M., Dashwood, R.J., and Lee, P.D., Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs, Composites, Part A, 2005, vol. 36, no. 6, pp. 747–763. https://doi.org/10.1016/j.compositesa.2004.10.027

    Article  CAS  Google Scholar 

  75. Han, Y.F., Shu, D., Jin, L., Wang, J., and Sun, B.D., Microstructure and grain refining performance of a rapidly solidified Al-5Ti-1B master alloy, Mater. Sci. Forum, 2007, vols. 546–549, pp. 755–760. https://doi.org/10.4028/www.scientific.net/msf.546-549.755

  76. Zhong, L.-H., Zhao, Y.-T., Zhang, S.-L., Chen, G., Chen, S., and Liu, Y.-H., Microstructure and mechanical properties of in situ TiB2/7055 composites synthesized by direct magnetochemistry melt reaction, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 9, pp. 2502−2508. https://doi.org/10.1016/S1003-6326(13)62761-2

    Article  CAS  Google Scholar 

  77. Zhao, Y.-T., Zhang, S.-L., and Chen, G., Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles fabricated via magnetochemistry reaction, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, no. 11, pp. 2129−2133. https://doi.org/10.1016/S1003-6326(09)60429-5

    Article  CAS  Google Scholar 

  78. Du, Y.-H., Zhang, P., Zhang, W.-Y., and Wang, Y.-J., Distribution of SiC particles in semisolid electromagnetic-mechanical stir-casting Al–SiC composite, China Foundry, 2018, vol. 15, pp. 351–357. https://doi.org/10.1007/s41230-018-8086-2

    Article  Google Scholar 

  79. Zhang, P., Zhang, W., Du, Y., and Wang, Y., High-performance Al–1.5 wt % Si–Al2O3 composite by vortex-free high-speed stir casting, J. Manuf. Processes, 2020, vol. 56, pp. 1126–1135. https://doi.org/10.1016/j.jmapro.2020.06.016

    Article  Google Scholar 

  80. Eskin, G.I. and Eskin, D.G., Ultrasonic Melt Treatment of Light Alloy Melts, Boca Raton, FL: CRC Press, 2014.

    Book  Google Scholar 

  81. Eskin, G.I., Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime, Metallurgist, 2010, vol. 54, nos. 7–8, pp. 505–513. https://doi.org/10.1007/s11015-010-9331-0

    Article  CAS  Google Scholar 

  82. Huang, K., Jiang, R., Li, X., Zhang, L., Li, Z., and Li, R., Effects of high-intensity ultrasound on microstructure and mechanical property of in situ TiB2/2A14 composites, Metals, 2019, vol. 9, article no. 1210. https://doi.org/10.3390/met9111210

    Article  CAS  Google Scholar 

  83. Chen, D., Zhao, Y., Li, G., Zheng, M., and Chen, G., Mechanism and kinetic model of in situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field, J. Wuhan Univ. Technol., Mater. Sci. Ed., 2011, vol. 26, no. 5, pp. 920–925. https://doi.org/10.1007/s11595-011-0337-7

    Article  CAS  Google Scholar 

  84. Choi, H., Jones, M., Konishi, H., and Li, X., Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and micro-structure of Al–7Si–0.3Mg alloy, Metall. Mater. Trans. A, 2012, vol. 43, pp. 738–746. https://doi.org/10.1007/s11661-011-0905-7

    Article  CAS  Google Scholar 

  85. Christy Roshini, P., Nagasivamuni, B., Raj, B., and Ravi, K.R., Ultrasonic-assisted synthesis of graphite-reinforced Al matrix nanocomposites, J. Mater. Eng. Perform., 2015, vol. 24, pp. 2234–2239. https://doi.org/10.1007/s11665-015-1491-4

    Article  CAS  Google Scholar 

  86. Su, H., Gao, W., Feng, Z., and Lu, Z., Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites, Mater. Des., 2012, vol. 36, pp. 590–596. https://doi.org/10.1016/j.matdes.2011.11.064

    Article  CAS  Google Scholar 

  87. Padhi, P., Dash, B.N., Mohanty, P., Satapathy, B.K., and Kar, S., Synthesis of bulk metal matrix nanocomposites by full cavitation solidification method, Key Eng. Mater., 2013, vol. 545, pp. 193–196. https://doi.org/10.4028/www.scientific.net/KEM.545.193

  88. Nampoothiri, J., Raj, B., and Ravi, K.R., Effect of ultrasonic treatment on microstructure and mechanical property of in situ Al/2TiB2 particulate composites, Mater. Sci. Forum, 2015, vols. 830–831, pp. 463–466. https://doi.org/10.4028/www.scientific.net/MSF.830-831.463

  89. Mirihanage, W., Xu, W., Tamayo-Ariztondo, J., Eskin, D., Garcia-Fernandez, M., Srirangam, P., and Lee, P., Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites, Mater. Lett., 2016, vol. 164, pp. 484–487. https://doi.org/10.1016/j.matlet.2015.11.022

    Article  CAS  Google Scholar 

  90. Afkhami, M., Hassanpour, A., Fairweather, M., and Njobuenwu, D.O., Reynolds number effects on particle agglomeration in turbulent channel flow, Comput.-Aided Chem. Eng., 2014, vol. 33, pp. 967–972. https://doi.org/10.1016/B978-0-444-63456-6.50162-9

    Article  CAS  Google Scholar 

  91. Liu, X., Jia, S., and Nastac, L., Ultrasonic cavitation-assisted molten metal processing of cast A356-nanocomposites, Int. J. Metalcast., 2014, vol. 8, pp. 51–58. https://doi.org/10.1007/BF03355591

    Article  CAS  Google Scholar 

  92. Jia, S., Allison, P.G., Rushing, T.W., and Nastac, L., Ultrasonic processing of 6061-based nanocomposites for high performance applications, in Advances in the Science and Engineering of Casting Solidification, Nastac, L., Eds., Springer, 2015. https://doi.org/10.1007/978-3-319-48117-3_5

    Book  Google Scholar 

  93. Gao, Q., Wu, S., Lu, S., Xiong, X., Du, R., and An, P., Improvement of particles distribution of in situ 5 vol % TiB2 particulates reinforced Al–4.5Cu alloy matrix composites with ultrasonic vibration treatment, J. Alloys Compd., 2017, vol. 692, pp. 1–9. https://doi.org/10.1016/j.jallcom.2016.09.013

    Article  CAS  Google Scholar 

  94. Paul, T., Zhang, C., Boesl, B., and Agarwal, A., Correlations to predict microstructure and mechanical properties of ultrasonically cast metal matrix nanocomposites as a function of treatment time, Adv. Eng. Mater., 2020, vol. 22, no. 10, article no. 2000413. https://doi.org/10.1002/adem.202000413

    Article  CAS  Google Scholar 

  95. Yuan, D., Hu, K., Lü, S., Wu, S., and Gao, Q., Preparation and properties of nano-SiCp/A356 composites synthesized with a new process, Mater. Sci. Technol., 2018, vol. 34, no. 12, pp. 1415–1424. https://doi.org/10.1080/02670836.2018.1458479

    Article  CAS  Google Scholar 

  96. Poovazhagan, L., Kalaichelvan, K., Balaji, V.R., Ganesh, P., and Kali Avudaiappan, A., Development of AA6061/SiCp metal matrix composites by conventional stir casting and ultrasonic assisted casting routes: A comparative study, Adv. Mater. Res., 2014, vols. 984–985, pp. 384–389. https://doi.org/10.4028/www.scientific.net/AMR.984-985.384

  97. Sillekens, W.H., Jarvis, D.J., Vorozhtsov, A., Bojare-vics, V., Badini, C.F., Pavese, M., Terzi, S., Salvo, L., Katsarou, L., and Dieringa, H., The ExoMet Project: EU/ESA research on high-performance light-metal alloys and nanocomposites, Metall. Mater. Trans. A, 2014, vol. 45, pp. 3349–3361. https://doi.org/10.1007/s11661-014-2321-2

    Article  CAS  Google Scholar 

  98. Mounib, M., Pavese, M., Badini, C., Lefebvre, W., and Dieringa, H., Reactivity and microstructure of Al2O3-reinforced magnesium matrix composites, Adv. Mater. Sci. Eng., 2014, vol. 2014, article no. 476079. https://doi.org/10.1155/2014/476079

    Article  Google Scholar 

  99. Daudin, R., Terzi, S., Lhuissier, P., Salvo, L., and Boller, E., Remelting and solidification of a 6082 Al alloy containing submicron yttria particles: 4D experimental study by in situ X-ray microtomography, Mater. Des., 2015, vol. 87, pp. 313–317. https://doi.org/10.1016/j.matdes.2015.07.141

    Article  CAS  Google Scholar 

  100. Zhang, W.-Q. and Lou, C.-S., Numerical model and experimental observation for distribution of SiCp in electromagnetic-centrifugally cast composites, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, no. 5, pp. 870–876. https://doi.org/10.1016/S1003-6326(09)60228-4

    Article  CAS  Google Scholar 

  101. Wang, G., Wang, Q., Easton, M.A., Dargusch, M.S., Qian, M., Eskin, D.G., and StJohn, D.H., Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium, Sci. Rep., 2017, vol. 7, article no. 9729. https://doi.org/10.1038/s41598-017-10354-6

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by Russian Foundation for Basic Research, project no. 20-18-50033.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Deev, E. S. Prusov or E. H. Ri.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deev, V.B., Prusov, E.S. & Ri, E.H. Physical Methods of Processing the Melts of Metal Matrix Composites: Current State and Prospects. Russ. J. Non-ferrous Metals 63, 292–304 (2022). https://doi.org/10.3103/S1067821222030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222030038

Keywords:

Navigation