Skip to main content
Log in

Effects of Mechanical Alloying on Ni-Rich NiTi Shape Memory Alloys Produced by Hot Isostatic Pressing

  • PRODUCTION PROCESSES AND PROPERTIES OF POWDERS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Although Ni-rich 60 NiTi shape memory alloy (SMA) shows superior properties, it is difficult to process due to its high hardness and studies on the manufacturing method are still needed. By the hot isostatic pressing process (HIP), parts close to the net shape are produced and the second operation may no longer be required. In this study, the effects of mechanical alloying on NiTi alloy produced by the HIP process were investigated. The starting powders of the first group were mechanically alloyed. The starting powders of the second group were mechanically mixed. Afterwards, the microstructures, transformation temperatures and some mechanical properties of these two groups were compared. For these examinations, SEM-EDS, XRD, DSC analyzes and microhardness measurement, density measurement by hydrostatic weighing method were performed. The result showed, mechanical alloying causes a more homogeneous microstructure and higher transformation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Uchil, J., Mahesh, K.K., and Kumara, K.G., Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy, Phys. B (Amsterdam, Neth.), 2002, vol. 324, pp. 419–428.

    Book  Google Scholar 

  2. Zu, X.T., Wan, F.R., Zhu, S., and Wang, L.M., Irradiation-induced martensitic transformation of TiNi shape memory alloys, Phys. B (Amsterdam, Neth.), 2004, vol. 351, pp. 59–62.

    Google Scholar 

  3. Dughaish, Z.H., Effect of proton irradiation on some physical properties of nitinol (NiTi) shape memory alloy: A review, Arabian J. Sci. Eng., 2014, vol. 39, pp. 511–524.

    Article  CAS  Google Scholar 

  4. Aksöz, S., Microstructural and mechanical investigation of NiTi intermetallics produced by hot deformation technique, Arabian J. Sci. Eng., 2017, vol. 42, pp. 2573–2581.

    Article  Google Scholar 

  5. Kaya, I., Karaca, H.E., Nagasako, M., and Kainuma, R., Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys, Mater. Charact., 2020, vol. 159, p. 110034.

    Article  CAS  Google Scholar 

  6. Karaca, H., Kaya, I., Tobe, H., Basaran, B., Nagasako, M., Kainuma, R., and Chumlyakov, Y., Shape memory behavior of high strength Ni54Ti46 alloys, Mater. Sci. Eng., A, 2013, vol. 580, pp. 66–70.

    Article  CAS  Google Scholar 

  7. Kaya, I., Shape memory and transformation behavior of high strength 60NiTi in compression, Smart Mater. Struct., 2016, vol. 25, p. 125031.

    Article  Google Scholar 

  8. Kim, J.I., Liu, Y., and Miyazaki, S., Ageing-induced two-stage R-phase transformation in Ti–50.9 at % Ni, Acta Mater., 2004, vol. 52, pp. 487–499.

    Article  CAS  Google Scholar 

  9. Derakhshandeh, M.R., Farvizi, M., and Javaheri, M., Effects of high-pressure torsion treatment on the microstructural aspects and electrochemical behaviour of austenitic NiTi shape memory alloy, J. Solid State Electrochem., 2021, vol. 25, pp. 279–290.

    Article  CAS  Google Scholar 

  10. Ko, W.S. and Jeon, J.B., Atomistic simulations on orientation dependent martensitic transformation during nanoindentation of NiTi shape-memory alloys, Comput. Mater. Sci., 2021, vol. 187, p. 110127.

    Article  CAS  Google Scholar 

  11. Özkul, I., The effect of aging time on at % Ti59.27Ni40.73 shape memory alloy, Phys. B (Amsterdam, Neth.), 2018, vol. 545, pp. 228–232.

    Google Scholar 

  12. Paula, A., Canejo, J., Martins, R., and Braz Fernandes, F., Effect of thermal cycling on the transformation temperature ranges of a Ni–Ti shape memory alloy, Mater. Sci. Eng., A, 2004, vol. 378, pp. 92–96.

    Article  Google Scholar 

  13. Zhou, Y., Fan, G., Zhang, J., Ding, X., Ren, X., Sun, J., and Otsuka, K., Understanding of multi-stage R-phase transformation in aged Ni-rich Ti–Ni shape memory alloys, Mater. Sci. Eng., A, 2006, vols. 438–440, pp. 602–607.

    Article  Google Scholar 

  14. Michutta, J., Somsen, C., Yawny, A., Dlouhy, A., and Eggeler, G., Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates, Acta Mater., 2006, vol. 54, pp. 3525–3542.

    Article  CAS  Google Scholar 

  15. Paryab, M., The effect of heat treatment on the microstructural and superelastic behavior of NiTi alloy with 58.5 wt % Ni, Assoc. Metall. Eng. Serb., 2019, vol. 16, pp. 23–27.

    Google Scholar 

  16. Khalil-Allafi, J., Eggeler, G., Schmahl, W.W., and Sheptyakov, D., Quantitative phase analysis in microstructures which display multiple step martensitic transformations in Ni-rich NiTi shape memory alloys, Mater. Sci. Eng., A, 2006, vols. 438–440, pp. 593–596.

    Article  Google Scholar 

  17. Khamei, A.A. and Dehghani, K., A study on the mechanical behavior and microstructural evolution of Ni 60 wt %–Ti 40 wt % (60Nitinol) intermetallic compound during hot deformation, Mater. Chem. Phys., 2010, vol. 123, pp. 269–277.

    Article  CAS  Google Scholar 

  18. Kaya, M., Orhan, N., and Tosun, G., The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material, Curr. Opin. Solid State Mater. Sci., 2010, vol. 14, pp. 21–25.

    Article  CAS  Google Scholar 

  19. Chu, C.L., Chung, J.C., and Chu, P.K., Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique, Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 49–53.

    Article  CAS  Google Scholar 

  20. Kaya, M., Orhan, N., Kurt, B., and Khan, T.I., The effect of solution treatment under loading on the microstructure and phase transformation behavior of porous NiTi shape memory alloy fabricated by SHS, J. Alloys Compd., 2009, vol. 475, pp. 378–382.

    Article  CAS  Google Scholar 

  21. Yuan, B., Chung, C.Y., and Zhu, M., Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing, Mater. Sci. Eng., A, 2004, vol. 382, pp. 181–187.

    Article  Google Scholar 

  22. Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer, H., and Stöver, D., Powder metallurgical fabrication processes for NiTi shape memory alloy parts, Mater. Sci. Eng., A, 2002, vol. 337, pp. 254–263.

    Article  Google Scholar 

  23. Krone, L., Schüller, E., Bram, M., Hamed, O., Buchkremer, H., and Stöver, D., Mechanical behaviour of NiTi parts prepared by powder metallurgical methods, Mater. Sci. Eng., A, 2004, vol. 378, pp. 185–190.

    Article  Google Scholar 

  24. Kondoh, K., Umeda, J., Soba, R., and Tanabe, Y., Advanced TiNi shape memory alloy stents fabricated by a powder metallurgy route, in Titanium in Medical and Dental Applications, Elsevier, 2018. https://doi.org/10.1016/B978-0-12-812456-7.00027-5

    Book  Google Scholar 

  25. Kim, Y.W. and Jeon, K.S., Shape memory characteristics of powder metallurgy processed Ti50Ni50 alloy, Phys. Procedia, 2010, vol. 10, pp. 17–21.

    Article  CAS  Google Scholar 

  26. Elsayed, A., Umeda, J., and Kondoh, K., Effect of quenching media on the properties of TiNi shape memory alloys fabricated by powder metallurgy, J. Alloys Compd., 2020, vol. 842, p. 155931.

    Article  CAS  Google Scholar 

  27. Wu, S.L., Liu, X.M., Chu, P.K., Chung, C.Y., Chu, C.L., and Yeung, K.W.K., Phase transformation behavior of porous NiTi alloys fabricated by capsule-free hot isostatic pressing, J. Alloys Compd., 2008, vol. 449, pp. 139–143.

    Article  CAS  Google Scholar 

  28. McNeese, M.D., Lagoudas, D.C., and Pollock, T.C., Processing of TiNi from elemental powders by hot isostatic pressing, Mater. Sci. Eng., A, 2000, vol. 280, pp. 334–348.

    Article  Google Scholar 

  29. Khanlari, K., Ramezani, M., and Kelly, P., 60NiTi: A review of recent research findings, potential for structural and mechanical applications, and areas of continued investigations, Trans. Indian Inst. Met., 2018, vol. 71, pp. 781–799.

    Article  CAS  Google Scholar 

  30. Jiang, H., Cao, S., Ke, C., Ma, X., and Zhang, X., Fine-grained bulk NiTi shape memory alloy fabricated by rapid solidification process and its mechanical properties and damping performance, J. Mater. Sci. Technol., 2013, vol. 29, pp. 855–862.

    Article  CAS  Google Scholar 

  31. Sadrnezhaad, S.K. and Selahi, A.R., Effect of mechanical alloying and sintering on Ni-Ti powders, Mater. Manuf. Processes, 2004, vol. 19, pp. 475–486.

    Article  CAS  Google Scholar 

  32. Wang, J. and Hu, K., Phase transformation of NiTi alloys during vacuum sintering, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 204, pp. 1–6.

  33. Maziarz, W., Dutkiewicz, J., Van Humbeeck, J., and Czeppe, T., Mechanically alloyed and hot pressed Ni-49.7Ti alloy showing martensitic transformation, Mater. Sci. Eng., A, 2004, vols. 375–377, pp. 844–848.

    Article  Google Scholar 

  34. Novák, P., Moravec, H., Salvetr, P., Prusa, F., Drahokoupil, J., Kopecek, J., Karlik, M., and Kubatik, T.F., Preparation of nitinol by non-conventional powder metallurgy techniques, Mater. Sci. Technol., 2015, vol. 31, pp. 1886–1893.

    Article  Google Scholar 

  35. Nobuki, T., Crivello, J.C., Cuevas, F., and Joubert, J.M., Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 10770–10776.

    Article  CAS  Google Scholar 

  36. Yen, F.C. and Hwang, K.S., Shape memory characteristics and mechanical properties of high-density powder metal TiNi with post-sintering heat treatment, Mater. Sci. Eng., A, 2011, vol. 528, pp. 5296–5305.

    Article  CAS  Google Scholar 

  37. Karaşoğlu, M. and Karaoğlu, S., Investigations of the effects of process and material factors on microstructure and mechanical properties in aluminum matrix composites, produced by powder metallurgy, Muhendis Makina, 2014, vol. 55, pp. 17–23.

    Google Scholar 

  38. Ye, L.L., Liu, Z.G., Raviprasad, K., Quan, M.X., Umemoto, M., and Hu, Z.Q., Consolidation of MA amorphous NiTi powders by spark plasma sintering, Mater. Sci. Eng., A, 1998, vol. 241, pp. 290–293.

    Article  Google Scholar 

  39. Czechowicz, A. and Langbein, S., Shape Memory Alloy Valves: Basics, Potentials, Design, Springer Int., 2015. https://doi.org/10.1007/978-3-319-19081-5

    Book  Google Scholar 

  40. Wang, X., Verlinden, B., and Van Humbeeck, J., Effect of aging temperature and time on the transformation behavior of a Ti–50.8 at % Ni alloy with small grains, Mater. Today: Proc., 2015, vol. 2, pp. S565–S568.

    Google Scholar 

  41. Shamimi, A., Amin-Ahmadi, B., Stebner, A., and Duerig, T., The Effect of low temperature aging and the evolution of R-phase in Ni-rich NiTi, Shape Mem. Superelasticity, 2018, vol. 4, pp. 417–427.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by Ege University (FDK-2019-20798 doctoral scientific research project) and Kastamonu University (Project no: KUhızdes2021/47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit Zeybek.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ümit Zeybek, Serdar Karaoğlu Effects of Mechanical Alloying on Ni-Rich NiTi Shape Memory Alloys Produced by Hot Isostatic Pressing. Russ. J. Non-ferrous Metals 63, 336–343 (2022). https://doi.org/10.3103/S1067821222030130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222030130

Keywords:

Navigation