Skip to main content
Log in

Effect of Addition of Scandium in Filler Rod on Tungsten Inert Gas Welding of AA5052-H32 Alloy

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Tungsten Inert Gas (TIG) welding was used successfully to weld 5 mm thick aluminum alloy plates AA5052-H32 utilizing as and 0.25 wt % Sc added ER 5356 filler rod in this study. Furthermore, the effect of adding Sc to the filler rod on TIG welded joints with mechanical and metallurgical properties was investigated. An optical microscope (OM) and a scanning electron microscope (SEM) were used to examine the microstructures of the joints The Al-Sc precipitates are distributed uniformly throughout the fusion zone of scandium added weldment. The welded joint with scandium added filler rod has fewer porosities, resulting in enhanced joint efficiency. Commercial filler rod welded joints had a coarse microstructure, but Sc modified filler rod welded junctions had a fine dendritic structure. The welded joints’ tensile characteristics and hardness were investigated. Compared to commercial filler rods, the weld junction created with scandium enhanced filler rod has twice the ductility. SEM fractography revealed brittle fractures in weld samples with commercial filler rods and ductile fractures in weld samples with scandium-added filler rods. With the addition of Sc to the filler rod, no appreciable hardness difference was observed in the fusion zone. This study paper will aid companies and researchers to better understand the metallurgical and mechanical behaviour of TIG-welded AA5052-H32 plates using scandium added filler rod, reducing the number of experimental trials and allowing for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Shanavas, S., Raja Dhas, J.E., and Murugan, N., Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding, Int. J. Adv. Manuf. Technol., 2018, vol. 95, pp. 4535–4546. https://doi.org/10.1007/s00170-017-1492-6

    Article  Google Scholar 

  2. Chen, J., Yuan, X., Hu, Z., Sun, C., Zhang, Y., and Zhang, Y., Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel, Mater. Charact., 2016, vol. 120, pp. 45–52. https://doi.org/10.1016/j.matchar.2016.08.015

    Article  CAS  Google Scholar 

  3. Wang, B., Chen, X.H., Pan, F.S., Mao, J.J., and Fang, Y., Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy, Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 2481–2489. https://doi.org/10.1016/S1003-6326(15)63866-3

    Article  CAS  Google Scholar 

  4. Wang, S.C., Zhu, Z., and Starink, M.J., Estimated dislocation densities in the cold-rolled Al–Mg–Cu–Mn alloys by a combination of yield strength data, EBSD, and strength models, J. Microsc., 2005, vol. 217, pp. 174–178. https://doi.org/10.1111/j.1365-2818.2005.01449.x

    Article  CAS  Google Scholar 

  5. Yuan, H., Li, J., Kong, X.Y., Yu, C.C., Yang, Q.X., and Liu, W.C., Strain hardening and orientation hardening/softening in the cold-rolled AA 5052 aluminum alloy, Mater. Lett., 2008, vol. 62, pp. 4085–4087. https://doi.org/10.1016/j.matlet.2008.05.067

    Article  CAS  Google Scholar 

  6. Liu, Y., Wang, W., Xie, J., Sun, S., Wang, L., Qian, Y., et al., Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding, Mater. Sci. Eng., A, 2012, vol. 549, pp. 7–13. https://doi.org/10.1016/j.msea.2012.03.108

    Article  CAS  Google Scholar 

  7. Hadadzadeh, A., Ghaznavi, M.M., and Kokabi, A.H., The effect of gas tungsten arc welding and pulsed-gas tungsten arc welding processes’ parameters on the heat-affected zone softening behavior of strain-hardened Al–6.7Mg alloy, Mater. Des., 2014, vol. 55, pp. 335–342. https://doi.org/10.1016/j.matdes.2013.09.061

    Article  CAS  Google Scholar 

  8. Hadadzadeh, A., Ghaznavi, M.M., and Kokabi, A.H., HAZ softening behavior of strain-hardened Al–6.7Mg alloy welded by GMAW and pulsed GMAW processes, Int. J. Adv. Manuf. Technol., 2017, vol. 92, pp. 2255–2265. https://doi.org/10.1007/s00170-017-0318-x

    Article  Google Scholar 

  9. Çam, G. and Mistikoglu, S., Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform., 2014, vol. 23, pp. 1936–1953. https://doi.org/10.1007/s11665-014-0968-x

    Article  CAS  Google Scholar 

  10. Kim, J., Lim, H., Cho, J., and Kim, C., Weldability during the laser lap welding of Al 5052 sheets, Arch. Mater. Sci. Eng., 2008, vol. 31, pp. 113–116.

    Google Scholar 

  11. Kojima, K. and Katayama, S., CO2 laser weldability of aluminum alloys (Report 1): Effect of welding conditions on melting characteristics, Weld. Int., 1998, vol. 12, pp. 519–528. https://doi.org/10.1080/09507119809448526

    Article  Google Scholar 

  12. Subbaiah, K., Geetha, M., Shanmugarajan, B., and Koteswara Rao, S.R., Comparative evaluation of inert tungsten gas and laser beam welding of AA5083-H321, Sadhana, 2012, vol. 37, pp. 587–593. https://doi.org/10.1007/s12046-012-0098-9

    Article  CAS  Google Scholar 

  13. Luijendijk, T., Welding of dissimilar aluminum alloys, J. Mater. Process. Technol., 2000, vol. 103, pp. 29–35. https://doi.org/10.1016/S0924-0136(00)00415-5

    Article  Google Scholar 

  14. Arunkumar, S., Sathiya, P., Devakumaran, K., and Ramesh Kumar, S., Microstructural and mechanical characterization of as weld and aged conditions of AA2219 aluminium alloy by gas tungsten arc welding process, Russ. J. Non-Ferrous Met., 2018, vol. 59, pp. 93–101. https://doi.org/10.3103/S1067821218010030

    Article  Google Scholar 

  15. Çam, G. and İpekoğlu, G., Recent developments in joining of aluminum alloys, Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1851–1866. https://doi.org/10.1007/s00170-016-9861-0

    Article  Google Scholar 

  16. Wang, X., Wang, K., Shen, Y., and Hu, K., Comparison of fatigue property between friction stir and TIG welds, J. Univ. Sci. Technol. Beijing, Miner., Metall., Mater., 2008, vol. 15, pp. 280–284. https://doi.org/10.1016/S1005-8850(08)60053-5

    Article  CAS  Google Scholar 

  17. Babu, N.K., Bhikanrao, P.Y., and Sivaprasad, K., Enhanced mechanical properties of AA5083 GTA weldments with current pulsing and addition of scandium, Mater. Sci. Forum, 2013, vol. 765, pp. 716–720. https://doi.org/10.4028/www.scientific.net/MSF.765.716

    Article  CAS  Google Scholar 

  18. Frankel, G.S. and Xia, Z., Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454, Corrosion, 1999, vol. 55, pp. 139–150. https://doi.org/10.5006/1.3283974

    Article  CAS  Google Scholar 

  19. Ratnesh, K. Shukla and Pravin, K.S., Comparative study of friction stir welding and tungsten inert gas welding process, Indian J. Sci. Technol., 2010, vol. 3, pp. 1–10.

    Google Scholar 

  20. Puparattanapong, K. and Limmaneevichitr, C., Effect of scandium on porosity formation in Al–6Si–0.3 Mg alloys, Trans. Indian Inst. Met., 2016, vol. 69, pp. 1587–1594. https://doi.org/10.1007/s12666-015-0732-4

    Article  CAS  Google Scholar 

  21. Babu, N.K., Talari, M.K., Pan, D., Sun, Z., Wei, J., and Sivaprasad, K., Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by Scandium modified fillers, Mater. Chem. Phys., 2012, vol. 137, pp. 543–551. https://doi.org/10.1016/j.matchemphys.2012.09.056

    Article  CAS  Google Scholar 

  22. Koteswara Rao, S.R., Kamala Devi, B., Sreenivasa Rao, K., and Prasad Rao, K., Thermomechanical treatments of Sc- and Mg-modified Al–Cu alloy welds, Int. J. Adv. Manuf. Technol., 2009, vol. 45, pp. 16–24. https://doi.org/10.1007/s00170-009-1936-8

    Article  Google Scholar 

  23. Willey, L.A., US Patent 3619181, 1971.

  24. Norman, A.F., Birley, S.S., and Prangnell, P.B., Development of new high strength Al-Sc filler wires for fusion welding 7000 series aluminum aerospace alloys, Sci. Technol. Weld. Joining, 2003, vol. 8, pp. 235–245. https://doi.org/10.1179/136217103225010989

    Article  CAS  Google Scholar 

  25. Koteswara Rao, S.R., Madhusudhan Reddy, G., Srinivasa Rao, K., Srinivasa Rao, P., Kamaraj, M., and Prasad Rao, K., Gas tungsten arc welded AA 2219 alloy using scandium containing fillers—mechanical and corrosion behavior, Trans. Indian Inst. Met., 2004, vol. 57, pp. 451–459.

    Google Scholar 

  26. Babu, N.K., Talari, M.K., Pan, D., and Wei, J., High-temperature mechanical properties investigation of Al–6.5% Cu gas tungsten arc welds made with scandium modified 2319 filler, Int. J. Adv. Manuf. Technol., 2013, vol. 65, pp. 1757–1767. https://doi.org/10.1007/s00170-012-4297-7

    Article  Google Scholar 

  27. Dev, S., Stuart, A.A., Kumaar, R.C.R.D., Murty, B.S., and Rao, K.P., Effect of scandium additions on Microstructure and mechanical properties of Al–Zn–Mg alloy welds, Mater. Sci. Eng., A, 2007, vol. 467, pp. 132–138. https://doi.org/10.1016/j.msea.2007.02.080

    Article  CAS  Google Scholar 

  28. Laura, T. and Miura, Y., The effect of scandium on the microstructure of Al alloys, Mater. Sci. Eng., A, 2000, vol. 280, pp. 41–44.

    Google Scholar 

  29. Norman, A.F., Prangnell, P.B., and McEwen, R.S., The solidification behavior of dilute aluminum-scandium alloys, Acta Mater., 1998, vol. 46, pp. 5715–5732. https://doi.org/10.1016/S1359-6454(98)00257-2

    Article  CAS  Google Scholar 

  30. Parker, B.A., Zhou, Z.F., and Nolle, P., The effect of small additions of scandium on the properties of aluminum alloys, J. Mater. Sci., 1995, vol. 30, pp. 452–458. https://doi.org/10.1007/BF00354411

    Article  CAS  Google Scholar 

  31. Filatov, Yu.A., Weldable aluminum-magnesium-scandium system base alloys, Weld. World, 1994, vol. 33, p. 428.

    CAS  Google Scholar 

  32. Davydov, V.G., Rostova, T.D., Zakharov, V.V., Filatov, Yu.A., and Yelagin, V.I., Scientific principles of making an alloying addition of scandium to aluminum alloys, Mater. Sci. Eng., A, 2000, vol. 280, pp. 30–36. https://doi.org/10.1016/S0921-5093(99)00652-8

    Article  Google Scholar 

  33. Munoz, A.C., Rückert, G., Huneau, B., Sauvage, X., et al., Comparison of TIG welded and friction stir welded Al–4.5Mg–0.26Sc alloy, 2017. Munoz, A.C., Rückert, G., Huneau, B., Sauvage, X., et al., Comparison of TIG welded and friction stir welded Al–4.5Mg–0.26Sc alloy, J. Mater. Process. Technol., 2008, vol. 197, pp. 337–343. https://doi.org/10.1016/j.jmatprotec.2007.06.035

    Article  CAS  Google Scholar 

  34. Hall, E.O., The deformation and aging of mild steel: II Characteristics of the Lüders deformation, Proc. Phys. Soc. Sect. B, 1951, vol. 64, pp. 742–747. https://doi.org/10.1088/0370-1301/64/9/302

    Article  Google Scholar 

  35. Petch, N.J., The cleavage strength of polycrystals, J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  36. Lathabai, S. and Lloyd, P.G., The effect of scandium on the microstructure, mechanical properties, and weldability of a cast Al–Mg alloy, Acta Mater., 2002, vol. 50, pp. 4275–4292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhinakaran Veeman.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafeez Ahmed, L., Veeman, D. & Muthu, S.M. Effect of Addition of Scandium in Filler Rod on Tungsten Inert Gas Welding of AA5052-H32 Alloy. Russ. J. Non-ferrous Metals 63, 315–327 (2022). https://doi.org/10.3103/S1067821222030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222030099

Keywords:

Navigation