1932

Abstract

The absolute mass scale of neutrinos is an intriguing open question in contemporary physics. The as-yet-unknown mass of the lightest and, at the same time, most abundant massive elementary particle species bears fundamental relevance to theoretical particle physics, astrophysics, and cosmology. The most model-independent experimental approach consists of precision measurements of the kinematics of weak decays, notably tritium β decay. With the KATRIN experiment, this direct neutrino-mass measurement has entered the sub-eV domain, recently pushing the upper limit on the electron-based neutrino mass down to 0.8 eV (90% CL) on the basis of first-year data out of ongoing, multiyear operations. Here, we review the experimental apparatus of KATRIN, the progress of data taking, and initial results. While KATRIN is heading toward the target sensitivity of 0.2 eV, other scientific goals are pursued. We discuss the search for light sterile neutrinos and an outlook on future keV-scale sterile-neutrino searches as well as further physics opportunities beyond the Standard Model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101920-113013
2022-09-26
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-101920-113013.html?itemId=/content/journals/10.1146/annurev-nucl-101920-113013&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fukuda Y et al. Phys. Rev. Lett. 81:1562 1998.)
  2. 2.
    Ahmad QR et al. Phys. Rev. Lett. 89:011301 2002.)
  3. 3.
    Formaggio JA, de Gouvêa ALC, Robertson RGH. Phys. Rep. 914:1 2021.)
  4. 4.
    Abbott TMC et al. Phys. Rev. D 105:023520 2022.)
  5. 5.
    Loredo TJ, Lamb DQ. Phys. Rev. D 65:063002 2002.)
  6. 6.
    Dolinski MJ, Poon AWP, Rodejohann W. Annu. Rev. Nucl. Part. Sci. 69:219 2019.)
  7. 7.
    Agostini M et al. Phys. Rev. Lett. 125:252502 2020.)
  8. 8.
    Gando A et al. Phys. Rev. Lett. 117:082503 2016.)
  9. 9.
    Bodine LI, Parno DS, Robertson RGH. Phys. Rev. C 91:035505 2015.)
  10. 10.
    Braß M, Haverkort MW. New J. Phys. 22:093018 2020.)
  11. 11.
    Zyla PA et al. PTEP 2020:083C01 2020.)
  12. 12.
    Saenz A, Jonsell S, Froelich P. Phys. Rev. Lett. 84:242 2000.)
  13. 13.
    Otten EW, Weinheimer C. Rep. Prog. Phys. 71:086201 2008.)
  14. 14.
    Picard A et al. Nucl. Instrum. Methods B 63:345 1992.)
  15. 15.
    Lobashev VM, Spivak PE. Nucl. Instrum. Methods A 240:305 1985.)
  16. 16.
    Wilkerson JF et al. Phys. Rev. Lett. 58:2023 1987.)
  17. 17.
    Kraus C et al. Eur. Phys. J. C 40:447 2005.)
  18. 18.
    Aseev VN et al. Phys. Rev. D 84:112003 2011.)
  19. 19.
    Monreal B, Formaggio JA. Phys. Rev. D 80:051301 2009.)
  20. 20.
    Ashtari Esfahani A et al. J. Phys. G 44:054004 2017.)
  21. 21.
    De Rujula A, Lusignoli M. Phys. Lett. B 118:429 1982.)
  22. 22.
    Gastaldo L et al. Eur. Phys. J. Spec. Top. 226:1623 2017.)
  23. 23.
    Fleischmann A, Enss C, Seidel G. Cryogenic Particle Detection151–216 Berlin/Heidelberg: Springer 2005.)
  24. 24.
    Gastaldo L et al. AIP Conf. Proc. 1185:607 2009.)
  25. 25.
    Alpert B et al. Eur. Phys. J. C 75:112 2015.)
  26. 26.
    Puiu A et al. J. Low Temp. Phys. 199:716 2020.)
  27. 27.
    Velte C et al. Eur. Phys. J. C 79:1026 2019.)
  28. 28.
    Aker M et al. Phys. Rev. Lett. 123:221802 2019.)
  29. 29.
    Aker M et al. Nat. Phys. 18:160 2022.)
  30. 30.
    Osipowicz A et al. arXiv:hep-ex/0109033 2001.)
  31. 31.
    Aker M et al. J. Instrum. 16:T08015 2021.)
  32. 32.
    Aker M et al. Sensors 20:4827 2020.)
  33. 33.
    Röllig M et al. Fusion Eng. Des. 100:177 2015.)
  34. 34.
    Beglarian A et al. J. Instrum. 17:T03002 2022.)
  35. 35.
    Vénos D et al. J. Instrum. 9:P12010 2014.)
  36. 36.
    Bornschein B et al. Fusion Sci. Tech. 71:231 2017.)
  37. 37.
    Arenz M et al. J. Instrum. 11:P04011 2016.)
  38. 38.
    Wandkowsky N et al. J. Phys. G 40:085102 2013.)
  39. 39.
    Fraenkle FM. J. Phys. Conf. Ser. 888:012070 2017.)
  40. 40.
    Altenmüller K et al. Astropart. Phys. 108:40 2019.)
  41. 41.
    Altenmüller K et al. Eur. Phys. J. C 79:807 2019.)
  42. 42.
    Behrens JD. 2016. Design and commissioning of a mono-energetic photoelectron source and active background reduction by magnetic pulse at the KATRIN spectrometers PhD Thesis Westfälische Wilhelms–Universität Münster
  43. 43.
    Babutzka M et al. New J. Phys. 14:103046 2012.)
  44. 44.
    Grohmann S, Bode T, Schön H, Süßer M. Cryogenics 51:438 2011.)
  45. 45.
    Grohmann S et al. Cryogenics 55–56:5 2013.)
  46. 46.
    Arenz M et al. J. Instrum. 13:P04020 2018.)
  47. 47.
    Altenmüller K et al. J. Phys. G 47:065002 2020.)
  48. 48.
    Arenz M et al. Eur. Phys. J. C 78:368 2018.)
  49. 49.
    Rest O et al. Metrologia 56:045007 2019.)
  50. 50.
    Aker M et al. Eur. Phys. J. C 80:264 2020.)
  51. 51.
    Röttele C. 2019. Tritium suppression factor of the KATRIN transport section PhD Thesis Karlsruhe Institute of Technology
  52. 52.
    Klein M. 2018. Tritium ions in KATRIN: blocking, removal and detection PhD Thesis Karlsruhe Institute of Technology
  53. 53.
    Schlösser M et al. Fusion Sci. Tech. 76:170 2020.)
  54. 54.
    Friedel FR. 2020. Ion and plasma systematics during the first KATRIN neutrino mass measurements PhD Thesis Karlsruhe Institute of Technology
  55. 55.
    Vizcaya Hernández AP. 2021. Toward a measurement of the neutrino mass with tritium: ion studies for the KATRIN and TRIMS experiments PhD Thesis Carnegie Mellon University
  56. 56.
    Aker M et al. Eur. Phys. J. C 81:579 2021.)
  57. 57.
    Letnev J et al. J. Instrum. 13:T08010 2018.)
  58. 58.
    Furse D et al. New J. Phys. 19:053012 2017.)
  59. 59.
    Arenz M et al. J. Instrum. 13:T08005 2018.)
  60. 60.
    Angrik J et al. (KATRIN Collab.) 2005. KATRIN design report 2004 Rep., KATRIN Collab . https://doi.org/10.5445/IR/270060419
    [Google Scholar]
  61. 61.
    Harms F. 2015. Characterization and minimization of background processes in the KATRIN main spectrometer PhD Thesis Karlsruhe Institute of Technology
  62. 62.
    Fränkle F et al. Astropart. Phys. 138:102686 2022.)
    [Google Scholar]
  63. 63.
    Aker M et al. Eur. Phys. J. C 80:821 2020.)
  64. 64.
    Aker M et al. Phys. Rev. D 104:012005 2021.)
  65. 65.
    Amsbaugh JF et al. Nucl. Instrum. Methods A 778:40 2015.)
  66. 66.
    Kleesiek M et al. Eur. Phys. J. C 79:204 2019.)
  67. 67.
    Lokhov AV, Tkachov FV. Phys. Part. Nucl. 46:347 2015.)
  68. 68.
    Feldman GJ, Cousins RD. Phys. Rev. D 57:3873 1998.)
  69. 69.
    Sturm M et al. Fusion Eng. Des. 170:112507 2021.)
  70. 70.
    Abazajian KN et al. arXiv:1204.5379 [hep-ph] 2012.)
  71. 71.
    Giunti C, Lasserre T. Annu. Rev. Nucl. Part. Sci. 69:163 2019.)
  72. 72.
    Mention G et al. Phys. Rev. D 83:073006 2011.)
  73. 73.
    Almazán H et al. Phys. Rev. D 102:052002 2020.)
  74. 74.
    Andriamirado M et al. Phys. Rev. D 103:032001 2021.)
  75. 75.
    Danilov M Proc. Sci. EPS-HEP2019:401 2020.)
  76. 76.
    Barinov VV et al. arXiv:2109.11482 [hep-ph] 2021.)
  77. 77.
    Wilks SS. Ann. Math. Stat. 9:60 1938.)
  78. 78.
    Serebrov AP et al. Phys. Rev. D 104:032003 2021.)
  79. 79.
    Aker M et al. Phys. Rev. Lett. 126:091803 2021.)
  80. 80.
    Aker M et al. Phys. Rev. D 105:072004 2022.)
  81. 81.
    Lokhov A et al. Eur. J. Phys. C 82:258 2022.)
  82. 82.
    Aker M et al. Operation modes of the KATRIN experiment tritium loop system using 83m Kr. Work. Pap., KATRIN Collab. 2022.)
    [Google Scholar]
  83. 83.
    Sentkerestiová J et al. J. Instrum. 13:P04018 2018.)
  84. 84.
    Mertens S et al. J. Phys. G 46:065203 2019.)
  85. 85.
    Cocco AG, Mangano G, Messina M. J.Cosmol. Astropart. Phys. 0706:015 2007.)
  86. 86.
    Long AJ, Lunardini C, Sabancilar E. J.Cosmol. Astropart. Phys. 1408:038 2014.)
  87. 87.
    Ringwald A. arXiv:hep-ph/0505024 2005.)
  88. 88.
    Hodak R et al. arXiv:1102.1799 [hep-ph] 2011.)
  89. 89.
    de Salas P, Gariazzo S, Lesgourgues J, Pastor S. J.Cosmol. Astropart. Phys. 1709:034 2017.)
  90. 90.
    Aker M et al. arXiv:2202.04587 [nucl-ex] 2022.)
  91. 91.
    Díaz JS, Kostelecký VA, Lehnert R. Phys. Rev. D 88:071902 2013.)
  92. 92.
    Kostelecký VA, Mewes M. Phys. Rev. D 85:096005 2012.)
  93. 93.
    Lehnert R. Hyperfine Interact. 193:275 2009.)
  94. 94.
    Lehnert R. arXiv:2112.13803 [hep-ph] 2021.)
  95. 95.
    Aker M et al. Search for Lorentz violation with the first KATRIN data Work. Pap., KATRIN Collab. 2022.)
  96. 96.
    Drewes M et al. J. Cosmol. Astropart. Phys. 1701:025 2017.)
  97. 97.
    Mertens S et al. J. Cosmol. Astropart. Phys. 1502:020 2015.)
  98. 98.
    Mertens S et al. Phys. Rev. D 91:042005 2015.)
  99. 99.
    Mertens S et al. J. Phys. G 48:015008 2020.)
  100. 100.
    Arcadi G et al. J. High Energy Phys. 1901:206 2019.)
  101. 101.
    Ludl PO, Rodejohann W. J. High Energy Phys. 1606:40 2016.)
  102. 102.
    Rodejohann W, Zhang H. Phys. Lett. B 737:81 2014.)
  103. 103.
    Barry J, Heeck J, Rodejohann W. J. High Energy Phys. 1407:81 2014.)
  104. 104.
    Huang G, Rodejohann W. arXiv:2110.03718 [hep-ph] 2021.)
/content/journals/10.1146/annurev-nucl-101920-113013
Loading
/content/journals/10.1146/annurev-nucl-101920-113013
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error