1932

Abstract

Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early–visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early–visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-104222
2022-07-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-104222.html?itemId=/content/journals/10.1146/annurev-neuro-111020-104222&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott CW, Kozanian OO, Huffman KJ. 2015. The effects of lifelong blindness on murine neuroanatomy and gene expression. Front. Aging Neurosci. 7:144
    [Google Scholar]
  2. Ackman JB, Burbridge TJ, Crair MC. 2012. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–25
    [Google Scholar]
  3. Allman BL, Bittencourt-Navarrete RE, Keniston LP, Medina AE, Wang MY, Meredith MA. 2008. Do cross-modal projections always result in multisensory integration?. Cereb. Cortex 18:2066–76
    [Google Scholar]
  4. Andelin AK, Olavarria JF, Fine I, Taber EN, Schwartz D et al. 2018. The effect of onset age of visual deprivation on visual cortex surface area across-species. Cereb. Cortex 29:4321–33
    [Google Scholar]
  5. Asanuma C, Stanfield BB. 1990. Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice. Neuroscience 39:533–45
    [Google Scholar]
  6. Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T. 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–50
    [Google Scholar]
  7. Bavelier D, Neville HJ. 2002. Cross-modal plasticity: where and how?. Nat. Rev. Neurosci. 3:443–52
    [Google Scholar]
  8. Bezdudnaya T, Keller A. 2008. Laterodorsal nucleus of the thalamus: a processor of somatosensory inputs. J. Comp. Neurol. 507:1979–89
    [Google Scholar]
  9. Blankenship AG, Feller MB. 2010. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11:18–29
    [Google Scholar]
  10. Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT et al. 2011. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front. Integr. Neurosci. 5:53
    [Google Scholar]
  11. Bronchti G, Heil P, Sadka R, Hess A, Scheich H, Wollberg Z. 2002. Auditory activation of ‘visual’ cortical areas in the blind mole rat (Spalax ehrenbergi). Eur. J. Neurosci. 16:311–29
    [Google Scholar]
  12. Bronchti G, Heil P, Scheich H, Wollberg Z. 1989. Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers. J. Comp. Neurol. 284:253–74
    [Google Scholar]
  13. Bronchti G, Schönenberger N, Welker E, Van der Loos H. 1992. Barrelfield expansion after neonatal eye removal in mice. Neuroreport 3:489–92
    [Google Scholar]
  14. Butler BE, de la Rua A, Ward-Able T, Lomber SG. 2018. Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness. Brain Struct. Funct. 223:819–35
    [Google Scholar]
  15. Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. 2019. Development and arealization of the cerebral cortex. Neuron 103:980–1004
    [Google Scholar]
  16. Cam JL, Estebanez L, Jacob V, Shulz DE 2011. Spatial structure of multiwhisker receptive fields in the barrel cortex is stimulus dependent. J. Neurophysiol. 106:986–98
    [Google Scholar]
  17. Chabot N, Butler BE, Lomber SG. 2015. Differential modification of cortical and thalamic projections to cat primary auditory cortex following early- and late-onset deafness. J. Comp. Neurol. 523:2297–20
    [Google Scholar]
  18. Chabot N, Charbonneau V, Laramée M-E, Tremblay R, Boire D, Bronchti G. 2008. Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci. Lett. 433:129–34
    [Google Scholar]
  19. Chabot N, Robert S, Tremblay R, Miceli D, Boire D, Bronchti G. 2007. Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur. J. Neurosci. 26:2334–48
    [Google Scholar]
  20. Charbonneau V, Laramée M, Boucher V, Bronchti G, Boire D. 2012. Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur. J. Neurosci. 36:2949–63
    [Google Scholar]
  21. Chase HB. 1945. Studies on an anophthalmic strain of mice. V. Associated cranial nerves and brain centers. J. Comp. Neurol. 83:121–39
    [Google Scholar]
  22. Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT et al. 2017. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. eLife 6:e22861
    [Google Scholar]
  23. Clancy B, Darlington RB, Finlay BL. 2001. Translating developmental time across mammalian species. Neuroscience 105:7–17
    [Google Scholar]
  24. Cooper HM, Herbin M, Nevo E. 1993. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J. Comp. Neurol. 328:313–50
    [Google Scholar]
  25. Cullen MJ, Kaiserman-Abramof IR. 1976. Cytological organization of the dorsal lateral geniculate nuclei in mutant anophthalmic and postnatally enucleated mice. J. Neurocytol. 5:407–24
    [Google Scholar]
  26. Dehay C, Giroud P, Berland M, Killackey H, Kennedy H. 1996a. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367:70–89
    [Google Scholar]
  27. Dehay C, Giroud P, Berland M, Killackey HP, Kennedy H. 1996b. Phenotypic characterisation of respecified visual cortex subsequent to prenatal enucleation in the monkey: development of acetylcholinesterase and cytochrome oxidase patterns. J. Comp. Neurol. 376:386–402
    [Google Scholar]
  28. Dooley JC, Krubitzer LA. 2019. Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision. J. Comp. Neurol. 527:1675–88
    [Google Scholar]
  29. Doron N, Wollberg Z. 1994. Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA-HRP tracing study. Neuroreport 5:2697–702
    [Google Scholar]
  30. D'Souza S, Lang RA 2020. Retinal ganglion cell interactions shape the developing mammalian visual system. Development 147:dev196535
    [Google Scholar]
  31. Dye CA, Abbott CW, Huffman KJ. 2012. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev. 7:5
    [Google Scholar]
  32. El-Danaf RN, Krahe TE, Dilger EK, Bickford ME, Fox MA, Guido W 2015. Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Dev 10:19
    [Google Scholar]
  33. Ewall G, Parkins S, Lin A, Jaoui Y, Lee H-K. 2021. Cortical and subcortical circuits for cross-modal plasticity induced by loss of vision. Front. Neural Circuits 15:665009
    [Google Scholar]
  34. Falchier A, Clavagnier S, Barone P, Kennedy H. 2002. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22:5749–59
    [Google Scholar]
  35. Fetter-Pruneda I, Geovannini-Acuña H, Santiago C, Ibarrarán-Viniegra AS, Martínez-Martínez E et al. 2013. Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth. PLOS ONE 8:e54940
    [Google Scholar]
  36. Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. 2021. Retinal waves prime visual motion detection by simulating future optic flow. Science 373:eabd0830
    [Google Scholar]
  37. Goldreich D, Kanics IM. 2006. Performance of blind and sighted humans on a tactile grating detection task. Percept. Psychophys. 68:1363–71
    [Google Scholar]
  38. Hall AJ, Lomber SG. 2008. Auditory cortex projections target the peripheral field representation of primary visual cortex. Exp. Brain Res. 190:413–30
    [Google Scholar]
  39. Heil P, Bronchti G, Wollberg Z, Scheich H. 1991. Invasion of visual cortex by the auditory system in the naturally blind mole rat. Neuroreport 2:735–38
    [Google Scholar]
  40. Henschke JU, Noesselt T, Scheich H, Budinger E. 2015. Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct. Funct. 220:955–77
    [Google Scholar]
  41. Heumann D, Rabinowicz TH. 1980. Postnatal development of the dorsal lateral geniculate nucleus in the normal and enucleated albino mouse. Exp. Brain Res. 38:75–85
    [Google Scholar]
  42. Hooks BM, Chen C. 2020. Circuitry underlying experience-dependent plasticity in the mouse visual system. Neuron 106:21–36
    [Google Scholar]
  43. Huber E, Chang K, Alvarez I, Hundle A, Bridge H, Fine I. 2019. Early blindness shapes cortical representations of auditory frequency within auditory cortex. J. Neurosci. 39:5143–52
    [Google Scholar]
  44. Huberman AD, Feller MB, Chapman B. 2008. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31:479–509
    [Google Scholar]
  45. Innocenti GM, Berbel P, Clarke S 1988. Development of projections from auditory to visual areas in the cat. J. Comp. Neurol. 272:242–59
    [Google Scholar]
  46. Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C et al. 2012. Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–28
    [Google Scholar]
  47. Izraeli R, Koay G, Lamish M, Heicklen-Klein AJ, Heffner HE et al. 2002. Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur. J. Neurosci. 15:693–712
    [Google Scholar]
  48. Jiang J, Zhu W, Shi F, Liu Y, Li J et al. 2009. Thick visual cortex in the early blind. J. Neurosci. 29:2205–11
    [Google Scholar]
  49. Kahn DM, Krubitzer L. 2002. Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals. PNAS 99:11429–34
    [Google Scholar]
  50. Kaiserman-Abramof IR. 1983. Intrauterine enucleation of normal mice mimics a structural compensatory response in the geniculate of eyeless mutant mice. Brain Res. 270:149–53
    [Google Scholar]
  51. Kaiserman-Abramof IR, Graybiel AM, Nauta WJH. 1980. The thalamic projection to cortical area 17 in a congenitally anophthalmic mouse strain. Neuroscience 5:41–52
    [Google Scholar]
  52. Karlen SJ, Kahn DM, Krubitzer L. 2006. Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142:843–58
    [Google Scholar]
  53. Karlen SJ, Krubitzer L. 2009. Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb. Cortex 19:1360–71
    [Google Scholar]
  54. Kok MA, Chabot N, Lomber SG. 2014. Cross-modal reorganization of cortical afferents to dorsal auditory cortex following early- and late-onset deafness. J. Comp. Neurol. 522:654–75
    [Google Scholar]
  55. Korte M, Rauschecker JP. 1993. Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J. Neurophysiol. 70:1717–21
    [Google Scholar]
  56. Kozanian OO, Abbott CW, Huffman KJ. 2015. Rapid changes in cortical and subcortical brain regions after early bilateral enucleation in the mouse. PLOS ONE 10:e0140391
    [Google Scholar]
  57. Laramée ME, Kurotani T, Rockland KS, Bronchti G, Boire D. 2011. Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation. Eur. J. Neurosci. 34:65–78
    [Google Scholar]
  58. Larsen DD, Luu JD, Burns ME, Krubitzer L. 2009. What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex?. Front. Neuroanat. 3:30
    [Google Scholar]
  59. Lee H-K, Whitt JL. 2015. Cross-modal synaptic plasticity in adult primary sensory cortices. Curr. Opin. Neurobiol. 35:119–26
    [Google Scholar]
  60. Liang M, Mouraux A, Hu L, Iannetti GD. 2013. Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat. Commun. 4:1979
    [Google Scholar]
  61. Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. 2021. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 109:2519–34
    [Google Scholar]
  62. Massé IO, Guillemette S, Laramée M-E, Bronchti G, Boire D 2014. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice. Brain Res. 1588:113–26
    [Google Scholar]
  63. Massé IO, Ross S, Bronchti G, Boire D. 2016. Asymmetric direct reciprocal connections between primary visual and somatosensory cortices of the mouse. Cereb. Cortex 27:4361–78
    [Google Scholar]
  64. Meng X, Kao JPY, Lee H-K, Kanold PO. 2015. Visual deprivation causes refinement of intracortical circuits in the auditory cortex. Cell Rep. 12:955–64
    [Google Scholar]
  65. Meredith MA, Lomber SG. 2017. Species-dependent role of crossmodal connectivity among the primary sensory cortices. Hear. Res. 343:83–91
    [Google Scholar]
  66. Mezzera C, López-Bendito G. 2016. Cross-modal plasticity in sensory deprived animal models: from the thalamocortical development point of view. J. Chem. Neuroanat. 75:32–40
    [Google Scholar]
  67. Molnár Z, Luhmann HJ, Kanold PO. 2020. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370:eabb2153
    [Google Scholar]
  68. Mooney RD, Fish SE, Figley BA, Rhoades RW. 1991. A transient projection from the trigeminal brainstem complex to the superficial layers of the hamster's superior colliculus. Exp. Brain Res. 86:367–72
    [Google Scholar]
  69. Mooney RD, Rhoades RW. 1983. Neonatal enucleation alters functional organization in hamster's lateral posterior nucleus. Dev. Brain Res. 9:399–404
    [Google Scholar]
  70. Moreno-Juan V, Filipchuk A, Antón-Bolaños N, Mezzera C, Gezelius H et al. 2017. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8:14172
    [Google Scholar]
  71. Moshiri A, Gonzalez E, Tagawa K, Maeda H, Wang M et al. 2008. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev. Biol. 316:214–27
    [Google Scholar]
  72. Müller F, Niso G, Samiee S, Ptito M, Baillet S, Kupers R. 2019. A thalamocortical pathway for fast rerouting of tactile information to occipital cortex in congenital blindness. Nat. Commun. 10:5154
    [Google Scholar]
  73. Necker R, Rehkämper G, Nevo E. 1992. Electrophysiological mapping of body representation in the cortex of the blind mole rat. Neuroreport 3:505–8
    [Google Scholar]
  74. Négyessy L, Gál V, Farkas T, Toldi J. 2000. Cross-modal plasticity of the corticothalamic circuits in rats enucleated on the first postnatal day. Eur. J. Neurosci. 12:1654–68
    [Google Scholar]
  75. Nys J, Scheyltjens I, Arckens L. 2015. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss. Front. Syst. Neurosci. 9:60
    [Google Scholar]
  76. Olcese U, Iurilli G, Medini P. 2013. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79:579–93
    [Google Scholar]
  77. Park H-J, Lee JD, Kim EY, Park B, Oh M-K et al. 2009. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. NeuroImage 47:98–106
    [Google Scholar]
  78. Petrus E, Rodriguez G, Patterson R, Connor B, Kanold PO, Lee H-K. 2015. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices. J. Neurosci. 35:8790–801
    [Google Scholar]
  79. Piché M, Chabot N, Bronchti G, Miceli D, Lepore F, Guillemot J-P. 2007. Auditory responses in the visual cortex of neonatally enucleated rats. Neuroscience 145:1144–56
    [Google Scholar]
  80. Piché M, Robert S, Miceli D, Bronchti G. 2004. Environmental enrichment enhances auditory takeover of the occipital cortex in anophthalmic mice. Eur. J. Neurosci. 20:3463–72
    [Google Scholar]
  81. Rabinowitch I, Laurent P, Zhao B, Walker D, Beets I et al. 2016. Neuropeptide-driven cross-modal plasticity following sensory loss in Caenorhabditis elegans. PLOS Biol. 14:e1002348
    [Google Scholar]
  82. Rakic P, Suñer I, Williams RW. 1991. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. PNAS 88:2083–87
    [Google Scholar]
  83. Ramamurthy DL, Dodson HK, Krubitzer LA. 2021. Developmental plasticity of texture discrimination following early vision loss in the marsupial Monodelphis domestica. J. Exp. Biol. 224:jeb236646
    [Google Scholar]
  84. Ramamurthy DL, Krubitzer LA. 2018. Neural coding of whisker-mediated touch in primary somatosensory cortex is altered following early blindness. J. Neurosci. 38:6172–89
    [Google Scholar]
  85. Rauschecker JP, Tian B, Korte M, Egert U. 1992. Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals. PNAS 89:5063–67
    [Google Scholar]
  86. Renier L, Cuevas I, Grandin CB, Dricot L, Plaza P et al. 2013. Right occipital cortex activation correlates with superior odor processing performance in the early blind. PLOS ONE 8:e71907
    [Google Scholar]
  87. Rhoades RW. 1980. Effects of neonatal enucleation on the functional organization of the superior colliculus in the golden hamster. J. Physiol. 301:383–99
    [Google Scholar]
  88. Rhoades RW, DellaCroce DD, Meadows I. 1981. Reorganization of somatosensory input to superior colliculus in neonatally enucleated hamsters: anatomical and electrophysiological experiments. J. Neurophysiol. 46:855–77
    [Google Scholar]
  89. Rhoades RW, Fish SE. 1983. Bilateral enucleation alters visual callosal but not corticotectal or corticogeniculate projections in hamster. Exp. Brain Res. 51:451–62
    [Google Scholar]
  90. Ricciardi E, Handjaras G, Pietrini P. 2014. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain. Exp. Biol. Med. 239:1414–20
    [Google Scholar]
  91. Riesen AH 1961. Stimulation as a requirement for growth and function in behavioral development. Functions of Varied Experience DW Fiske, SR Maddi 57–105 Homewood, IL: Dorsey Press
    [Google Scholar]
  92. Röder B, Teder-Sälejärvi W, Sterr A, Rösler F, Hillyard SA, Neville HJ. 1999. Improved auditory spatial tuning in blind humans. Nature 400:162–66
    [Google Scholar]
  93. Rodríguez G, Chakraborty D, Schrode KM, Saha R, Uribe I et al. 2018. Cross-modal reinstatement of thalamocortical plasticity accelerates ocular dominance plasticity in adult mice. Cell Rep. 24:3433–40.e4
    [Google Scholar]
  94. Sadka RS, Wollberg Z. 2004. Response properties of auditory activated cells in the occipital cortex of the blind mole rat: an electrophysiological study. J. Comp. Physiol. 190:403–13
    [Google Scholar]
  95. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. 2017. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40:499–538
    [Google Scholar]
  96. Seabrook TA, El-Danaf RN, Krahe TE, Fox MA, Guido W 2013. Retinal input regulates the timing of corticogeniculate innervation. J. Neurosci. 33:10085–97
    [Google Scholar]
  97. Sherman SM. 2017. Functioning of circuits connecting thalamus and cortex. Compr. Physiol. 7:713–39
    [Google Scholar]
  98. Sieben K, Roder B, Hanganu-Opatz IL. 2013. Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing. J. Neurosci. 33:5736–49
    [Google Scholar]
  99. Simons DJ. 1985. Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54:615–35
    [Google Scholar]
  100. Smith IT, Townsend LB, Huh R, Zhu H, Smith SL. 2017. Stream-dependent development of higher visual cortical areas. Nat. Neurosci. 20:200–8
    [Google Scholar]
  101. Stehberg J, Dang PT, Frostig RD. 2014. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front. Neuroanat. 8:93
    [Google Scholar]
  102. Tiriac A, Smith BE, Feller MB. 2018. Light prior to eye opening promotes retinal waves and eye-specific segregation. Neuron 100:1059–65.e4
    [Google Scholar]
  103. Toldi J, Farkas T, Völgyi B. 1994. Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study. Neurosci. Lett. 167:1–4
    [Google Scholar]
  104. Toldi J, Feher O, Joo F, Antal A, Wolff JR. 1990. Sodium bromide treatment influences the plasticity of somatosensory responses in the rat cortex as induced by enucleation. Neuroscience 37:675–83
    [Google Scholar]
  105. Veinante P, Jacquin MF, Deschênes M. 2000. Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J. Comp. Neurol. 420:233–43
    [Google Scholar]
  106. Wan CY, Wood AG, Reutens DC, Wilson SJ. 2010. Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia 48:344–48
    [Google Scholar]
  107. Wiesel TN, Hubel DH. 1965. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003–17
    [Google Scholar]
  108. Williams AL, Reese BE, Jeffery G. 2002. Role of retinal afferents in regulating growth and shape of the lateral geniculate nucleus. J. Comp. Neurol. 445:269–77
    [Google Scholar]
  109. Wong C, Chabot N, Kok MA, Lomber SG. 2015. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness. J. Comp. Neurol. 523:1925–47
    [Google Scholar]
  110. Wong M, Gnanakumaran V, Goldreich D. 2011. Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms. J. Neurosci. 31:7028–37
    [Google Scholar]
  111. Zheng D, Purves D. 1995. Effects of increased neural activity on brain growth. PNAS 92:1802–6
    [Google Scholar]
  112. Zingg B, Chou X, Zhang Z, Mesik L, Liang F et al. 2017. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93:33–47
    [Google Scholar]
  113. Zingg B, Hintiryan H, Gou L, Song MY, Bay M et al. 2014. Neural networks of the mouse neocortex. Cell 156:1096–111
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-104222
Loading
/content/journals/10.1146/annurev-neuro-111020-104222
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error