1932

Abstract

The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-091421-125115
2022-07-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-091421-125115.html?itemId=/content/journals/10.1146/annurev-neuro-091421-125115&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott L, Regehr W. 2004. Synaptic computation. Nature 431:796–803
    [Google Scholar]
  2. Aizenman CD, Linden DJ. 2000. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat. Neurosci. 3:109–11
    [Google Scholar]
  3. Aizenman CD, Manis PB, Linden DJ. 1998. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827–35
    [Google Scholar]
  4. Albergaria C, Silva NT, Pritchett DL, Carey MR. 2018. Locomotor activity modulates associative learning in mouse cerebellum. Nat. Neurosci. 21:725–35
    [Google Scholar]
  5. Albus JS. 1971. A theory of cerebellar function. Math. Biosci. 10:25–61
    [Google Scholar]
  6. Alcami P, Marty A 2013. Estimating functional connectivity in an electrically coupled interneuron network. PNAS 110:E4798–807
    [Google Scholar]
  7. Alexander RPD, Bowie D 2021. Intrinsic plasticity of cerebellar stellate cells is mediated by NMDA receptor regulation of voltage-gated Na+ channels. J. Physiol. 599:647–65
    [Google Scholar]
  8. Anastassiou CA, Koch C. 2015. Ephaptic coupling to endogenous electric field activity: Why bother?. Curr. Opin. Neurobiol. 31:95–103
    [Google Scholar]
  9. Ankri L, Husson Z, Pietrajtis K, Proville R, Lena C et al. 2015. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. eLife 4:e06262
    [Google Scholar]
  10. Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM et al. 2018. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper. Cerebellum 17:654–82
    [Google Scholar]
  11. Arenz A, Silver RA, Schaefer AT, Margrie TW. 2008. The contribution of single synapses to sensory representation in vivo. Science 321:977–80
    [Google Scholar]
  12. Arlt C, Hausser M. 2020. Microcircuit rules governing impact of single interneurons on Purkinje cell output in vivo. Cell Rep. 30:3020–35.e3
    [Google Scholar]
  13. Armano S, Rossi P, Taglietti V, D'Angelo E. 2000. Long-term potentiation of intrinsic excitability at the mossy fiber–granule cell synapse of rat cerebellum. J. Neurosci. 20:5208–16
    [Google Scholar]
  14. Balmer TS, Trussell LO 2019. Selective targeting of unipolar brush cell subtypes by cerebellar mossy fibers. eLife 8:e44964
    [Google Scholar]
  15. Bartos M, Vida I, Jonas P 2007. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8:45–56
    [Google Scholar]
  16. Batini C, Buisseret-Delmas C, Compoint C, Daniel H 1989. The GABAergic neurones of the cerebellar nuclei in the rat: projections to the cerebellar cortex. Neurosci. Lett. 99:251–56
    [Google Scholar]
  17. Belmeguenai A, Hansel C. 2005. A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation. J. Neurosci. 25:10768–72
    [Google Scholar]
  18. Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C et al. 2010. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J. Neurosci. 30:13630–43
    [Google Scholar]
  19. Billings G, Piasini E, Lorincz A, Nusser Z, Silver RA. 2014. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83:960–74
    [Google Scholar]
  20. Blenkinsop TA, Lang EJ. 2006. Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J. Neurosci. 26:1739–48
    [Google Scholar]
  21. Blot A, Barbour B. 2014. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau. Nat. Neurosci. 17:289–95
    [Google Scholar]
  22. Borges-Merjane C, Trussell LO. 2015. ON and OFF unipolar brush cells transform multisensory inputs to the auditory system. Neuron 85:1029–42
    [Google Scholar]
  23. Bostan AC, Strick PL. 2018. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19:338–50
    [Google Scholar]
  24. Brickley SG, Cull-Candy SG, Farrant M. 1996. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. 497:Pt. 3753–59
    [Google Scholar]
  25. Brown AM, Arancillo M, Lin T, Catt DR, Zhou J et al. 2019. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci. Rep. 9:1742
    [Google Scholar]
  26. Brown ST, Raman IM. 2018. Sensorimotor integration and amplification of reflexive whisking by well-timed spiking in the cerebellar corticonuclear circuit. Neuron 99:564–75.e2
    [Google Scholar]
  27. Carey MR, Regehr WG. 2009. Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron 62:112–22
    [Google Scholar]
  28. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K 2019. Cerebellar modulation of the reward circuitry and social behavior. Science 363:aav0581
    [Google Scholar]
  29. Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA. 2015. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat. Neurosci. 18:718–27
    [Google Scholar]
  30. Chadderton P, Margrie TW, Hausser M. 2004. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–60
    [Google Scholar]
  31. Chen CH, Newman LN, Stark AP, Bond KE, Zhang D et al. 2021. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain and emotional valence. bioRxiv 2021.09.21.461236. https://doi.org/10.1101/2021.09.21.461236
    [Crossref]
  32. Chen S, Augustine GJ, Chadderton P 2016. The cerebellum linearly encodes whisker position during voluntary movement. eLife 5:e10509
    [Google Scholar]
  33. Chen S, Augustine GJ, Chadderton P 2017. Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nat. Commun. 8:232
    [Google Scholar]
  34. Coddington LT, Rudolph S, Vande Lune P, Overstreet-Wadiche L, Wadiche JI. 2013. Spillover-mediated feedforward inhibition functionally segregates interneuron activity. Neuron 78:1050–62
    [Google Scholar]
  35. Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N et al. 1998. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur. J. Neurosci. 10:1202–8
    [Google Scholar]
  36. Courtemanche R, Lamarre Y. 2005. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J. Neurophysiol. 93:2039–52
    [Google Scholar]
  37. Crowley JJ, Fioravante D, Regehr WG 2009. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration. Neuron 63:843–53
    [Google Scholar]
  38. D'Angelo E, Rossi P, Armano S, Taglietti V 1999. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber–granule cell transmission in rat cerebellum. J. Neurophysiol. 81:277–87
    [Google Scholar]
  39. De Gruijl JR, Bazzigaluppi P, de Jeu MTG, De Zeeuw CI. 2012. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLOS Comput. Biol. 8:e1002814
    [Google Scholar]
  40. de Solages C, Szapiro G, Brunel N, Hakim V, Isope P et al. 2008. High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron 58:775–88
    [Google Scholar]
  41. De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK. 2011. Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12:327–44
    [Google Scholar]
  42. Delvendahl I, Hallermann S. 2016. The cerebellar mossy fiber synapse as a model for high-frequency transmission in the mammalian CNS. Trends Neurosci. 39:722–37
    [Google Scholar]
  43. D'Errico A, Prestori F, D'Angelo E 2009. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J. Physiol. 587:5843–57
    [Google Scholar]
  44. Dieudonne S, Dumoulin A. 2000. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J. Neurosci. 20:1837–48
    [Google Scholar]
  45. DiGregorio DA, Nusser Z, Silver RA 2002. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35:521–33
    [Google Scholar]
  46. Dugue GP, Brunel N, Hakim V, Schwartz E, Chat M et al. 2009. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61:126–39
    [Google Scholar]
  47. Dugue GP, Dumoulin A, Triller A, Dieudonne S. 2005. Target-dependent use of co-released inhibitory transmitters at central synapses. J. Neurosci. 25:6490–98
    [Google Scholar]
  48. Duguid I, Branco T, Chadderton P, Arlt C, Powell K, Hausser M 2015. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition. PNAS 112:13099–104
    [Google Scholar]
  49. Duguid I, Branco T, London M, Chadderton P, Hausser M 2012. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32:11132–43
    [Google Scholar]
  50. Eccles J, Ito M, Szentágothai J. 1967. The Cerebellum as a Neuronal Machine Berlin: Springer
  51. Ekerot CF, Kano M. 1985. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 342:357–60
    [Google Scholar]
  52. Fleming E, Hull C 2019. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J. Neurophysiol. 121:105–14
    [Google Scholar]
  53. Fore TR, Taylor BN, Brunel N, Hull C. 2020. Acetylcholine modulates cerebellar granule cell spiking by regulating the balance of synaptic excitation and inhibition. J. Neurosci. 40:2882–94
    [Google Scholar]
  54. Fujita H, Aoki H, Ajioka I, Yamazaki M, Abe M et al. 2014. Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice. PLOS ONE 9:e86679
    [Google Scholar]
  55. Fujita H, Kodama T, du Lac S 2020. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 9:e58613
    [Google Scholar]
  56. Gaffield MA, Bonnan A, Christie JM. 2019. Conversion of graded presynaptic climbing fiber activity into graded postsynaptic Ca2+ signals by Purkinje cell dendrites. Neuron 102:762–69.e4
    [Google Scholar]
  57. Gaffield MA, Christie JM. 2017. Movement rate is encoded and influenced by widespread, coherent activity of cerebellar molecular layer interneurons. J. Neurosci. 37:4751–65
    [Google Scholar]
  58. Gaffield MA, Rowan MJM, Amat SB, Hirai H, Christie JM 2018. Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements. eLife 7:e36246
    [Google Scholar]
  59. Gall D, Prestori F, Sola E, D'Errico A, Roussel C et al. 2005. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J. Neurosci. 25:4813–22
    [Google Scholar]
  60. Galliano E, Gao Z, Schonewille M, Todorov B, Simons E et al. 2013. Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Rep. 3:1239–51
    [Google Scholar]
  61. Gao Z, Proietti-Onori M, Lin Z, Ten Brinke MM, Boele HJ et al. 2016. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron 89:645–57
    [Google Scholar]
  62. Geurts FJ, Timmermans J, Shigemoto R, De Schutter E. 2001. Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience 104:499–512
    [Google Scholar]
  63. Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD et al. 2017. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat. Neurosci. 20:727–34
    [Google Scholar]
  64. Guo C, Huson V, Macosko E, Regehr WG. 2021a. Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses. Nat. Commun. 12:5491
    [Google Scholar]
  65. Guo C, Rudolph S, Neuwirth ME, Regehr WG 2021b. Purkinje cell outputs selectively inhibit a subset of unipolar brush cells in the input layer of the cerebellar cortex. eLife 10:e68802
    [Google Scholar]
  66. Guo C, Witter L, Rudolph S, Elliott HL, Ennis KA, Regehr WG. 2016. Purkinje cells directly inhibit granule cells in specialized regions of the cerebellar cortex. Neuron 91:1330–41
    [Google Scholar]
  67. Gurnani H, Silver RA. 2021. Multidimensional population activity in an electrically coupled inhibitory circuit in the cerebellar cortex. Neuron 109:1739–53.e8
    [Google Scholar]
  68. Hallermann S, Fejtova A, Schmidt H, Weyhersmuller A, Silver RA et al. 2010. Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–23
    [Google Scholar]
  69. Han KS, Chen CH, Khan MM, Guo C, Regehr WG. 2020. Climbing fiber synapses rapidly and transiently inhibit neighboring Purkinje cells via ephaptic coupling. Nat. Neurosci. 23:1399–409
    [Google Scholar]
  70. Han KS, Guo C, Chen CH, Witter L, Osorno T, Regehr WG 2018. Ephaptic coupling promotes synchronous firing of cerebellar Purkinje cells. Neuron 100:564–78.e3
    [Google Scholar]
  71. Hansel C, Linden DJ 2000. Long-term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuron 26:473–82
    [Google Scholar]
  72. Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H 2018. Anatomical evidence for a direct projection from Purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front. Neural Circuits 12:6
    [Google Scholar]
  73. Hausser M, Raman IM, Otis T, Smith SL, Nelson A et al. 2004. The beat goes on: spontaneous firing in mammalian neuronal microcircuits. J. Neurosci. 24:9215–19
    [Google Scholar]
  74. Hawkes R, Gravel C. 1991. The modular cerebellum. Prog. Neurobiol. 36:309–27
    [Google Scholar]
  75. Heffley W, Song EY, Xu Z, Taylor BN, Hughes MA et al. 2018. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat. Neurosci. 21:1431–41
    [Google Scholar]
  76. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. 2015. Encoding of action by the Purkinje cells of the cerebellum. Nature 526:439–42
    [Google Scholar]
  77. Hirono M, Saitow F, Kudo M, Suzuki H, Yanagawa Y et al. 2012. Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells. PLOS ONE 7:e29663
    [Google Scholar]
  78. Hoehne A, McFadden MH, DiGregorio DA 2020. Feed-forward recruitment of electrical synapses enhances synchronous spiking in the mouse cerebellar cortex. eLife 9:e57344
    [Google Scholar]
  79. Hong S, Negrello M, Junker M, Smilgin A, Thier P, De Schutter E 2016. Multiplexed coding by cerebellar Purkinje neurons. eLife 5:e13810
    [Google Scholar]
  80. Houck BD, Person AL. 2014. Cerebellar loops: a review of the nucleocortical pathway. Cerebellum 13:378–85
    [Google Scholar]
  81. Houck BD, Person AL. 2015. Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex. J. Comp. Neurol. 523:2254–71
    [Google Scholar]
  82. Hoxha E, Tempia F, Lippiello P, Miniaci MC 2016. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse. Front. Synaptic Neurosci. 8:35
    [Google Scholar]
  83. Huang CC, Sugino K, Shima Y, Guo C, Bai S et al. 2013. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2:e00400
    [Google Scholar]
  84. Hull C. 2020. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 9:e54073
    [Google Scholar]
  85. Hull C, Regehr WG. 2012. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73:149–58
    [Google Scholar]
  86. Hull CA, Chu Y, Thanawala M, Regehr WG. 2013. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J. Neurosci. 33:5895–902
    [Google Scholar]
  87. Ito M. 1972. Neural design of the cerebellar motor control system. Brain Res. 40:81–84
    [Google Scholar]
  88. Ito M. 1989. Long-term depression. Annu. Rev. Neurosci. 12:85–102
    [Google Scholar]
  89. Ito M, Sakurai M, Tongroach P. 1982. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324:113–34
    [Google Scholar]
  90. Iwakura A, Uchigashima M, Miyazaki T, Yamasaki M, Watanabe M 2012. Lack of molecular-anatomical evidence for GABAergic influence on axon initial segment of cerebellar Purkinje cells by the pinceau formation. J. Neurosci. 32:9438–48
    [Google Scholar]
  91. Jakab RL, Hamori J. 1988. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. 179:81–88
    [Google Scholar]
  92. Jorntell H, Ekerot CF. 2003. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J. Neurosci. 23:9620–31
    [Google Scholar]
  93. Jorntell H, Ekerot CF. 2006. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26:11786–97
    [Google Scholar]
  94. Kanichay RT, Silver RA. 2008. Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J. Neurosci. 28:8955–67
    [Google Scholar]
  95. Khaliq ZM, Gouwens NW, Raman IM. 2003. The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J. Neurosci. 23:4899–912
    [Google Scholar]
  96. Kim JA, Sekerkova G, Mugnaini E, Martina M 2012. Electrophysiological, morphological, and topological properties of two histochemically distinct subpopulations of cerebellar unipolar brush cells. Cerebellum 11:1012–25
    [Google Scholar]
  97. Kimpo RR, Rinaldi JM, Kim CK, Payne HL, Raymond JL 2014. Gating of neural error signals during motor learning. eLife 3:e02076
    [Google Scholar]
  98. Kinney GA, Overstreet LS, Slater NT. 1997. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78:1320–33
    [Google Scholar]
  99. Kitazawa S, Wolpert DM. 2005. Rhythmicity, randomness and synchrony in climbing fiber signals. Trends Neurosci. 28:611–19
    [Google Scholar]
  100. Knoflach F, Kemp JA. 1998. Metabotropic glutamate group II receptors activate a G protein-coupled inwardly rectifying K+ current in neurones of the rat cerebellum. J. Physiol. 509:347–54
    [Google Scholar]
  101. Knogler LD, Markov DA, Dragomir EI, Stih V, Portugues R. 2017. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr. Biol. 27:1288–302
    [Google Scholar]
  102. Kostadinov D, Beau M, Blanco-Pozo M, Hausser M. 2019. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat. Neurosci. 22:950–62
    [Google Scholar]
  103. Kozareva V, Martin C, Osorno T, Rudolph S, Guo C et al. 2021. A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types. Nature 598:214–19
    [Google Scholar]
  104. Laine J, Axelrad H 1994. The candelabrum cell: a new interneuron in the cerebellar cortex. J. Comp. Neurol. 339:159–73
    [Google Scholar]
  105. Laine J, Axelrad H 1996. Morphology of the Golgi-impregnated Lugaro cell in the rat cerebellar cortex: a reappraisal with a description of its axon. J. Comp. Neurol. 375:618–40
    [Google Scholar]
  106. Laine J, Axelrad H 2002. Extending the cerebellar Lugaro cell class. Neuroscience 115:363–74
    [Google Scholar]
  107. Lang EJ, Tang T, Suh CY, Xiao J, Kotsurovskyy Y et al. 2014. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system. Front. Syst. Neurosci. 8:210
    [Google Scholar]
  108. Lanore F, Cayco-Gajic NA, Gurnani H, Coyle D, Silver RA. 2021. Cerebellar granule cell axons support high-dimensional representations. Nat. Neurosci. 24:1142–50
    [Google Scholar]
  109. Lawrenson CL, Watson TC, Apps R. 2016. Transmission of predictable sensory signals to the cerebellum via climbing fiber pathways is gated during exploratory behavior. J. Neurosci. 36:7841–51
    [Google Scholar]
  110. Leznik E, Llinas R. 2005. Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J. Neurophysiol. 94:2447–56
    [Google Scholar]
  111. Liu SQ, Cull-Candy SG 2000. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405:454–58
    [Google Scholar]
  112. Llinas R, Baker R, Sotelo C. 1974. Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol. 37:560–71
    [Google Scholar]
  113. Llinas R, Yarom Y. 1986. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J. Physiol. 376:163–82
    [Google Scholar]
  114. Locatelli F, Soda T, Montagna I, Tritto S, Botta L, Prestori F, D'Angelo E. 2021. Calcium channel-dependent induction of long-term synaptic plasticity at excitatory Golgi cell synapses of cerebellum. J. Neurosci. 41:3307–19
    [Google Scholar]
  115. Long MA, Deans MR, Paul DL, Connors BW 2002. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J. Neurosci. 22:10898–905
    [Google Scholar]
  116. Low AYT, Goldstein N, Gaunt JR, Huang K-P, Zainolabidin N et al. 2021. Reverse-translational identification of a cerebellar satiation network. Nature 600:269–73
    [Google Scholar]
  117. Mann-Metzer P, Yarom Y. 1999. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci. 19:3298–306
    [Google Scholar]
  118. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, Farias da Guarda SN et al. 2012. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–87
    [Google Scholar]
  119. Marr D. 1969. A theory of cerebellar cortex. J. Physiol. 202:437–70
    [Google Scholar]
  120. McElvain LE, Bagnall MW, Sakatos A, du Lac S. 2010. Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron 68:763–75
    [Google Scholar]
  121. Mitchell SJ, Silver RA. 2000a. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J. Neurosci. 20:8651–58
    [Google Scholar]
  122. Mitchell SJ, Silver RA. 2000b. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404:498–502
    [Google Scholar]
  123. Mitchell SJ, Silver RA. 2003. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433–45
    [Google Scholar]
  124. Mittmann W, Koch U, Hausser M. 2005. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. 563:369–78
    [Google Scholar]
  125. Miyazaki T, Yamasaki M, Tanaka KF, Watanabe M. 2020. Compartmentalized input-output organization of Lugaro cells in the cerebellar cortex. Neuroscience 462:89–105
    [Google Scholar]
  126. Mugnaini E, Sekerkova G, Martina M. 2011. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res. Rev. 66:220–45
    [Google Scholar]
  127. Najac M, Raman IM. 2015. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons. J. Neurosci. 35:544–49
    [Google Scholar]
  128. Neki A, Ohishi H, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N 1996. Metabotropic glutamate receptors mGluR2 and mGluR5 are expressed in two non-overlapping populations of Golgi cells in the rat cerebellum. Neuroscience 75:815–26
    [Google Scholar]
  129. Nelson AB, Krispel CM, Sekirnjak C, du Lac S. 2003. Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron 40:609–20
    [Google Scholar]
  130. Nietz AK, Vaden JH, Coddington LT, Overstreet-Wadiche L, Wadiche JI 2017. Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity. eLife 6:e29215
    [Google Scholar]
  131. O'Connor SM, Berg RW, Kleinfeld D 2002. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J. Neurophysiol. 87:2137–48
    [Google Scholar]
  132. Orduz D, Llano I. 2007. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. PNAS 104:17831–36
    [Google Scholar]
  133. Osorno T, Rudolph S, Nguyen T, Kozareva V, Nadaf N et al. 2021. Candelabrum cells are molecularly distinct, ubiquitous interneurons of the cerebellar cortex with specialized circuit properties. bioRxiv 2021.04.09.439172. https://doi.org/10.1101/2021.04.09.439172
    [Crossref]
  134. Özcan OO, Wang X, Binda F, Dorgans K, De Zeeuw CI et al. 2020. Differential coding strategies in glutamatergic and GABAergic neurons in the medial cerebellar nucleus. J. Neurosci. 40:159–70
    [Google Scholar]
  135. Ozden I, Dombeck DA, Hoogland TM, Tank DW, Wang SS. 2012. Widespread state-dependent shifts in cerebellar activity in locomoting mice. PLOS ONE 7:e42650
    [Google Scholar]
  136. Palay SL, Chan-Palay V. 1974. Cerebellar Cortex: Cytology and Organization New York: Springer
  137. Payne HL, French RL, Guo CC, Nguyen-Vu TB, Manninen T, Raymond JL 2019. Cerebellar Purkinje cells control eye movements with a rapid rate code that is invariant to spike irregularity. eLife 8:e37102
    [Google Scholar]
  138. Person AL, Raman IM. 2011. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481:502–5
    [Google Scholar]
  139. Person AL, Raman IM. 2012. Synchrony and neural coding in cerebellar circuits. Front. Neural Circuits 6:97
    [Google Scholar]
  140. Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA et al. 2021. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 36:12109721
    [Google Scholar]
  141. Pouille F, Scanziani M. 2001. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293:1159–63
    [Google Scholar]
  142. Prestori F, Bonardi C, Mapelli L, Lombardo P, Goselink R et al. 2013. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLOS ONE 8:e64828
    [Google Scholar]
  143. Pugh JR, Raman IM. 2006. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron 51:113–23
    [Google Scholar]
  144. Raman IM, Bean BP. 1999. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 19:1663–74
    [Google Scholar]
  145. Rancillac A, Crepel F. 2004. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J. Physiol. 554:707–20
    [Google Scholar]
  146. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Hausser M. 2007. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450:1245–48
    [Google Scholar]
  147. Ritzau-Jost A, Delvendahl I, Rings A, Byczkowicz N, Harada H et al. 2014. Ultrafast action potentials mediate kilohertz signaling at a central synapse. Neuron 84:152–63
    [Google Scholar]
  148. Robberechts Q, Wijnants M, Giugliano M, De Schutter E. 2010. Long-term depression at parallel fiber to Golgi cell synapses. J. Neurophysiol. 104:3413–23
    [Google Scholar]
  149. Roh SE, Kim SH, Ryu C, Kim CE, Kim YG et al. 2020. Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium. eLife 9:e61593
    [Google Scholar]
  150. Rossi DJ, Alford S, Mugnaini E, Slater NT 1995. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse. J. Neurophysiol. 74:24–42
    [Google Scholar]
  151. Rossi DJ, Hamann M. 1998. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20:783–95
    [Google Scholar]
  152. Rowan MJM, Bonnan A, Zhang K, Amat SB, Kikuchi C et al. 2018. Graded control of climbing-fiber-mediated plasticity and learning by inhibition in the cerebellum. Neuron 99:999–1015.e6
    [Google Scholar]
  153. Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF et al. 2020. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep. 33:108338
    [Google Scholar]
  154. Russo MJ, Yau H-J, Nunzi M-G, Mugnaini E, Martina M 2008. Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells. J. Neurophysiol. 100:3351–60
    [Google Scholar]
  155. Sahin M, Hockfield S. 1990. Molecular identification of the Lugaro cell in the cat cerebellar cortex. J. Comp. Neurol. 301:575–84
    [Google Scholar]
  156. Sakurai M. 1987. Synaptic modification of parallel fibre–Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J. Physiol. 394:463–80
    [Google Scholar]
  157. Salin PA, Malenka RC, Nicoll RA. 1996. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797–803
    [Google Scholar]
  158. Sarnaik R, Raman IM 2018. Control of voluntary and optogenetically perturbed locomotion by spike rate and timing of neurons of the mouse cerebellar nuclei. eLife 7:e29546
    [Google Scholar]
  159. Saviane C, Silver RA. 2006. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439:983–87
    [Google Scholar]
  160. Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE et al. 2011. Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50
    [Google Scholar]
  161. Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S. 2003. Purkinje cell synapses target physiologically unique brainstem neurons. J. Neurosci. 23:156392–98
    [Google Scholar]
  162. Shuster SA, Wagner MJ, Pan-Doh N, Ren J, Grutzner SM et al. 2021. The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. PNAS 118:e2101826118
    [Google Scholar]
  163. Sillitoe RV, Fu Y, Watson C 2011. The cerebellum. The Mouse Nervous System C Watson, G Paxinos, L Puelles 360–97 Cambridge, MA: Academic
    [Google Scholar]
  164. Simat M, Parpan F, Fritschy JM 2007. Heterogeneity of glycinergic and GABAergic interneurons in the granule cell layer of mouse cerebellum. J. Comp. Neurol. 500:71–83
    [Google Scholar]
  165. Slemmer JE, Haasdijk ED, Engel DC, Plesnila N, Weber JT 2007. Aldolase C-positive cerebellar Purkinje cells are resistant to delayed death after cerebral trauma and AMPA-mediated excitotoxicity. Eur. J. Neurosci. 26:649–56
    [Google Scholar]
  166. Soler-Llavina GJ, Sabatini BL. 2006. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat. Neurosci. 9:798–806
    [Google Scholar]
  167. Sotelo C, Llinas R, Baker R 1974. Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J. Neurophysiol. 37:541–59
    [Google Scholar]
  168. Steinmetz JE, Lavond DG, Thompson RF. 1989. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3:225–33
    [Google Scholar]
  169. Straub I, Witter L, Eshra A, Hoidis M, Byczkowicz N et al. 2020. Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity. eLife 9:e51771
    [Google Scholar]
  170. Strick PL, Dum RP, Fiez JA. 2009. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32:413–34
    [Google Scholar]
  171. Sugihara I, Shinoda Y. 2007. Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J. Neurosci. 27:9696–710
    [Google Scholar]
  172. Suvrathan A, Payne HL, Raymond JL. 2016. Timing rules for synaptic plasticity matched to behavioral function. Neuron 92:959–67
    [Google Scholar]
  173. Sylvester SJG, Lee MM, Ramirez AD, Lim S, Goldman MS, Aksay ERF. 2017. Population-scale organization of cerebellar granule neuron signaling during a visuomotor behavior. Sci. Rep. 7:16240
    [Google Scholar]
  174. Szapiro G, Barbour B. 2007. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat. Neurosci. 10:735–42
    [Google Scholar]
  175. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–51
    [Google Scholar]
  176. Tsutsumi S, Hidaka N, Isomura Y, Matsuzaki M, Sakimura K et al. 2019. Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. eLife 8:e47021
    [Google Scholar]
  177. Turecek J, Jackman SL, Regehr WG. 2016. Synaptic specializations support frequency-independent Purkinje cell output from the cerebellar cortex. Cell Rep. 17:3256–68
    [Google Scholar]
  178. Turecek J, Jackman SL, Regehr WG. 2017. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses. Nature 551:503–6
    [Google Scholar]
  179. Vaaga CE, Brown ST, Raman IM 2020. Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray. eLife 9:e54302
    [Google Scholar]
  180. Valera AM, Binda F, Pawlowski SA, Dupont J-L, Casella J-F et al. 2016. Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex. eLife 5:e09862
    [Google Scholar]
  181. van Dorp S, De Zeeuw CI. 2014. Variable timing of synaptic transmission in cerebellar unipolar brush cells. PNAS 111:5403–8
    [Google Scholar]
  182. van Welie I, Roth A, Ho SS, Komai S, Hausser M 2016. Conditional spike transmission mediated by electrical coupling ensures millisecond precision-correlated activity among interneurons in vivo. Neuron 90:810–23
    [Google Scholar]
  183. Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA 2010. Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 67:435–51
    [Google Scholar]
  184. Vervaeke K, Lorincz A, Nusser Z, Silver RA. 2012. Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335:1624–28
    [Google Scholar]
  185. Wadiche JI, Jahr CE. 2005. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat. Neurosci. 8:1329–34
    [Google Scholar]
  186. Wagner MJ, Luo L. 2020. Neocortex-cerebellum circuits for cognitive processing. Trends Neurosci. 43:42–54
    [Google Scholar]
  187. Wall MJ. 2002. Furosemide reveals heterogeneous GABAA receptor expression at adult rat Golgi cell to granule cell synapses. Neuropharmacology 43:737–49
    [Google Scholar]
  188. Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K 2006. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat. Neurosci. 9:389–97
    [Google Scholar]
  189. Walter JT, Khodakhah K. 2009. The advantages of linear information processing for cerebellar computation. PNAS 106:4471–76
    [Google Scholar]
  190. Watt AJ, Cuntz H, Mori M, Nusser Z, Sjostrom PJ, Hausser M. 2009. Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat. Neurosci. 12:463–73
    [Google Scholar]
  191. Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. 2010. Mechanisms of synchronous activity in cerebellar Purkinje cells. J. Physiol. 588:2373–90
    [Google Scholar]
  192. Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG. 2016. Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to Purkinje cells and interneurons. Neuron 91:312–19
    [Google Scholar]
  193. Wu B, Blot FG, Wong AB, Osório C, Adolfs Y et al. 2019. TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. eLife 8:e45590
    [Google Scholar]
  194. Xu-Friedman MA, Regehr WG. 2003. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J. Neurosci. 23:2182–92
    [Google Scholar]
  195. Yang Y, Lisberger SG. 2014. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 510:529–32
    [Google Scholar]
  196. Zampini V, Liu JK, Diana MA, Maldonado PP, Brunel N, Dieudonne S 2016. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit. eLife 5:e15872
    [Google Scholar]
  197. Zang Y, De Schutter E. 2021. The cellular electrophysiological properties underlying multiplexed coding in Purkinje cells. J. Neurosci. 41:1850–63
    [Google Scholar]
  198. Zhou H, Lin Z, Voges K, Ju C, Gao Z et al. 2014. Cerebellar modules operate at different frequencies. eLife 3:e02536
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-091421-125115
Loading
/content/journals/10.1146/annurev-neuro-091421-125115
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error