Skip to main content

Advertisement

Log in

Towards Extraordinary Catalysts for Aromatization of Biomass and Low-Cost C5 Streams

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The production of aromatics with fuel properties from either biomass resources or low-cost refinery streams such as C5 is an important industrial interest. However, the strategic design of reliable catalysts with commercial compatibilities remained a challenge. Several investigations were carried out in this direction. This review accordingly presents a comprehensive analysis of the literature on the catalysis-based strategies adopted for aromatization of the feeds. Valorization of furans and allied oxygenates derived from biomass into aromatics was initially covered. The review examined strategies for C5 streams aromatization, co-upgrading of furans with hydrocarbons and methanol and discussed how biomass-derived bio-oils could be valorized into aromatics. In addition to discussion on the influence of catalytic textural, acidity and topological properties, the paper provided substantial updates on the associated reaction mechanisms. A perspective for further investigations in aromatization was also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Leonard MD, Michaelides EE, Michaelides DN (2020) Energy storage needs for the substitution of fossil fuel power plants with renewables. Renew Energy 145:951–962

    Article  Google Scholar 

  2. Curtin J, McInerney C, Gallachóir B, Hickey C, Deane P, Deeney P (2019) Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: a review of the literature. Renew Sustain Energy Rev 116:109402

    Article  Google Scholar 

  3. Martins F, Felgueiras C, Smitková M (2018) Fossil fuel energy consumption in European countries. Energy Procedia 153:107–111

    Article  Google Scholar 

  4. Barreto RA (2018) Fossil fuels, alternative energy and economic growth. Econ Model 75:196–220

    Article  Google Scholar 

  5. Eichner T, Pethig R (2017) Trade in fossil fuel deposits for preservation and strategic action. J Public Econ 147:50–61

    Article  Google Scholar 

  6. Wolela A (2006) Fossil fuel energy resources of Ethiopia: oil shale deposits. J Afr Earth Sc 46(3):263–280

    Article  Google Scholar 

  7. Wolela A (2007) Fossil fuel energy resources of Ethiopia: coal deposits. Int J Coal Geol 72(3):293–314

    Article  CAS  Google Scholar 

  8. Li Y, Chiu Y-H, Lin T-Y (2019) Coal production efficiency and land destruction in China’s coal mining industry. Resour Policy 63:101449

    Article  Google Scholar 

  9. Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155(3):553–566

    Article  CAS  Google Scholar 

  10. Peng W, Guo F, Hu G, Lyu Y, Gong D, Liu J et al (2019) Geochemistry and accumulation process of natural gas in the Shenmu gas field, ordos basin, central China. J Petrol Sci Eng 180:1022–1033

    Article  CAS  Google Scholar 

  11. Ruble I, The US (2019) crude oil refining industry: recent developments, upcoming challenges and prospects for exports. J Econ Asymmetries 20:e00132

    Article  Google Scholar 

  12. Robertson G, Palazoglu A, Romagnoli JA (2010) Refining scheduling of crude oil unloading, storing, and processing considering production level cost. In: Pierucci S, Ferraris GB (eds) Computer aided chemical engineering. Elsevier, pp 1159–1164

    Google Scholar 

  13. Tang E, Peng C (2017) A macro- and microeconomic analysis of coal production in China. Resour Policy 51:234–242

    Article  Google Scholar 

  14. Yang F, Qiu D (2019) Exploring coal spontaneous combustion by bibliometric analysis. Process Saf Environ Prot 132:1–10

    Article  CAS  Google Scholar 

  15. Iakovlieva A, Boichenko S, Vovk O, Shkilniuk I, Lejda K (2013) Traditional and alternative jet fuels: problems of quality standardization. J Pet Environ Biotechnol 4:146

    Article  Google Scholar 

  16. OPEC. World Oil Outlook 2040. Organization of Petroleum Exporting Countries (OPEC). ISBN 978-3-9503936-4-4: https://www.opec.org/opec_web/flipbook/WOO2017/WOO2017/assets/common/downloads/WOO%202017.pdf.2017.

  17. Cabeza LF, Palacios A, Serrano S, Ürge-Vorsatz D, Barreneche C (2018) Comparison of past projections of global and regional primary and final energy consumption with historical data. Renew Sustain Energy Rev 82:681–688

    Article  Google Scholar 

  18. Yeh S, Mishra GS, Fulton L, Kyle P, McCollum DL, Miller J et al (2017) Detailed assessment of global transport-energy models’ structures and projections. Transp Res Part D 55:294–309

    Article  Google Scholar 

  19. Duan C, Chen B (2018) Analysis of global energy consumption inequality by using Lorenz curve. Energy Procedia 152:750–755

    Article  Google Scholar 

  20. Sohn I (2007) Long-term energy projections: what lessons have we learned? Energy Policy 35(9):4574–4584

    Article  Google Scholar 

  21. Costoya X, deCastro M, Santos F, Sousa MC, Gómez-Gesteira M (2019) Projections of wind energy resources in the Caribbean for the 21st century. Energy 178:356–367

    Article  Google Scholar 

  22. Pillot B, Muselli M, Poggi P, Dias JB (2019) Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: the case of solar PV. Energy Policy 127:113–124

    Article  Google Scholar 

  23. Ansari D, Holz F (2019) Anticipating global energy, climate and policy in 2055: constructing qualitative and quantitative narratives. Energy Res Soc Sci 58:101250

    Article  Google Scholar 

  24. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 43:843–862

    Article  CAS  Google Scholar 

  25. Daimary N, Eldiehy KSH, Boruah P, Deka D, Bora U, Kakati BK (2022) Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J Environ Chem Eng 10(1):107108

    Article  CAS  Google Scholar 

  26. Whittaker C, Shield I (2017) Factors affecting wood, energy grass and straw pellet durability—a review. Renew Sustain Energy Rev 71:1–11

    Article  Google Scholar 

  27. Burgess PJ, Rivas Casado M, Gavu J, Mead A, Cockerill T, Lord R et al (2012) A framework for reviewing the trade-offs between, renewable energy, food, feed and wood production at a local level. Renew Sustain Energy Rev 16(1):129–142

    Article  Google Scholar 

  28. Vega LY, López L, Valdés CF, Chejne F (2019) Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Manag 87:108–118

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Shi S, Jia X, Xia F, Ma H, Gao J et al (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86

    Article  Google Scholar 

  30. Galadima A, Muraza O (2015) Waste to liquid fuels: potency, progress and challenges. Int J Energy Res 39(11):1451–1478

    Article  Google Scholar 

  31. Galadima A, Muraza O (2015) In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers Manag 105:338–354

    Article  CAS  Google Scholar 

  32. Nikku M, Deb A, Sermyagina E, Puro L (2019) Reactivity characterization of municipal solid waste and biomass. Fuel 254:115690

    Article  CAS  Google Scholar 

  33. Ceribeli KB, de Souza-Santos ML (2019) Effect of dry-solid content level in feeding slurry of municipal solid waste consumed by FSIG/GT power generation process; a theoretical study. Fuel 254:115727

    Article  CAS  Google Scholar 

  34. Sipra AT, Gao N, Sarwar H (2018) Municipal solid waste (MSW) pyrolysis for bio-fuel production: a review of effects of MSW components and catalysts. Fuel Process Technol 175:131–147

    Article  CAS  Google Scholar 

  35. Wang F, Ouyang D, Zhou Z, Page SJ, Liu D, Zhao X (2021) Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J Energy Chem 57:247–280

    Article  CAS  Google Scholar 

  36. Yang H, Bai Y, Ouyang D, Wang F, Liu D, Zhao X (2021) Coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion with molybdovanadophosphoric heteropolyacids as anode electron transfer carriers. J Energy Chem 58:133–146

    Article  CAS  Google Scholar 

  37. Galadima A, Masudi A, Muraza O (2022) Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: a mini review. Microporous Mesoporous Mater 336:111846

    Article  CAS  Google Scholar 

  38. Ullah K, Ahmad M, Sofia, Sharma VK, Lu P, Harvey A, et al (2015) Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143:414–23.

  39. Wang A, Austin D, Song H (2019) Investigations of thermochemical upgrading of biomass and its model compounds: opportunities for methane utilization. Fuel 246:443–453

    Article  CAS  Google Scholar 

  40. Osman AI, Abdelkader A, Farrell C, Rooney D, Morgan K (2019) Reusing, recycling and up-cycling of biomass: a review of practical and kinetic modelling approaches. Fuel Process Technol 192:179–202

    Article  CAS  Google Scholar 

  41. Krigstin S, Wetzel S (2016) A review of mechanisms responsible for changes to stored woody biomass fuels. Fuel 175:75–86

    Article  CAS  Google Scholar 

  42. Erdiwansyah, Mahidin, Mamat R, Sani MSM, Khoerunnisa F, Kadarohman A (2019) Target and demand for renewable energy across 10 ASEAN countries by 2040. Electr J 32(10):106670.

  43. Robert FC, Sisodia GS, Gopalan S (2018) A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids. Sustain Cities Soc 40:735–745

    Article  Google Scholar 

  44. Leonard MD, Michaelides EE, Michaelides DN (2018) Substitution of coal power plants with renewable energy sources—shift of the power demand and energy storage. Energy Convers Manag 164:27–35

    Article  Google Scholar 

  45. Zhang C, Kwak G, Lee Y-J, Jun K-W, Gao R, Park H-G et al (2019) Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability. Microporous Mesoporous Mater 284:316–326

    Article  CAS  Google Scholar 

  46. Zhang P, Liu J, Cui J, Yang Y, Hu C-L, Liu B-J (2019) Preparation of Pt/CeL reforming catalyst and its performance in the aromatization of naphtha. J Fuel Chem Technol 47(3):318–322

    Article  CAS  Google Scholar 

  47. He P, Jarvis J, Liu L, Song H (2019) The promoting effect of Pt on the co-aromatization of pentane with methane and propane over Zn-Pt/HZSM-5. Fuel 239:946–954

    Article  CAS  Google Scholar 

  48. Liu G, Liu J, He N, Sheng S, Wang G, Guo H (2019) Pt supported on Zn modified silicalite-1 zeolite as a catalyst for n-hexane aromatization. J Energy Chem 34:96–103

    Article  Google Scholar 

  49. Shirazi SA, Abdollahipoor B, Windom B, Reardon KF, Foust TD (2020) Effects of blending C3–C4 alcohols on motor gasoline properties and performance of spark ignition engines: a review. Fuel Process Technol 197:106194

    Article  CAS  Google Scholar 

  50. Katsuba Y, Grigoreva L (2018) Improving environmental performance and knock resistance of gasoline. Transp Res Procedia 36:281–285

    Article  Google Scholar 

  51. Roshanaei A, Alavi SM (2018) Using two-zone fluidized bed reactor in propane aromatization over Zn/HZSM-5 catalyst. Fuel Process Technol 176:197–204

    Article  CAS  Google Scholar 

  52. Skutil K, Taniewski M (2007) Indirect methane aromatization via oxidative coupling, products separation and aromatization steps. Fuel Process Technol 88(9):877–882

    Article  CAS  Google Scholar 

  53. Zhang L, Liu H, Li X, Xie S, Wang Y, Xin W et al (2010) Differences between ZSM-5 and ZSM-11 zeolite catalysts in 1-hexene aromatization and isomerization. Fuel Process Technol 91(5):449–455

    Article  CAS  Google Scholar 

  54. Liu H, Yang S, Hu J, Shang F, Li Z, Xu C et al (2012) A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization. Fuel Process Technol 96:195–202

    Article  CAS  Google Scholar 

  55. Meng X, Wang Z, Zhang R, Xu C, Liu Z, Wang Y et al (2013) Catalytic conversion of C4 fraction for the production of light olefins and aromatics. Fuel Process Technol 116:217–221

    Article  CAS  Google Scholar 

  56. Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. Chemsuschem 1(5):397–400

    Article  CAS  PubMed  Google Scholar 

  57. Blommel PG, Keenan GR, Rozmiarek RT, Cortright RD (2008) Catalytic conversion of sugar into conventional gasoline, diesel, jet fuel, and other hydrocarbons. Int Sugar J 110(1319):672–679

    CAS  Google Scholar 

  58. Smith PB (2015) Bio-based sources for terephthalic acid. Green polymer chemistry: biobased materials and biocatalysis. American Chemical Society, Olympia, pp 453–469

    Book  Google Scholar 

  59. Xiong Z, Chen Y, Azis MM, Hu X, Deng W, Han H et al (2020) Roles of furfural during the thermal treatment of bio-oil at low temperatures. J Energy Chem 50:85–95

    Article  Google Scholar 

  60. Zhang Y, Zhang J, Su D (2015) 5-Hydroxymethylfurfural: a key intermediate for efficient biomass conversion. J Energy Chem 24(5):548–551

    Article  CAS  Google Scholar 

  61. Liu D, Togbé C, Tran L-S, Felsmann D, Oßwald P, Nau P et al (2014) Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography—Part I: furan. Combust Flame 161(3):748–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tran L-S, Wang Z, Carstensen H-H, Hemken C, Battin-Leclerc F, Kohse-Höinghaus K (2017) Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combust Flame 181:251–269

    Article  CAS  Google Scholar 

  63. González C, Pariente MI, Molina R, Masa MO, Espina LG, Melero JA et al (2021) Study of highly furfural-containing refinery wastewater streams using a conventional homogeneous Fenton process. J Environ Chem Eng 9(1):104894

    Article  Google Scholar 

  64. Chen J, Ge Y, Guo Y, Chen J (2018) Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using palladium catalyst supported on mesoporous graphitic carbon nitride. J Energy Chem 27(1):283–289

    Article  Google Scholar 

  65. Galadima A, Muraza O (2018) Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: role of heterogeneous catalysts. Renew Sustain Energy Rev 81:1037–1048

    Article  CAS  Google Scholar 

  66. Galadima A, Muraza O (2019) Zeolite catalyst design for the conversion of glucose to furans and other renewable fuels. Fuel 258:115851

    Article  CAS  Google Scholar 

  67. Hu X, Kadarwati S, Wang S, Song Y, Hasan MDM, Li C-Z (2015) Biomass-derived sugars and furans: which polymerize more during their hydrolysis? Fuel Process Technol 137:212–219

    Article  CAS  Google Scholar 

  68. Tarade K, Shinde S, Rode C (2020) Magnetically separable catalyst for condensation of renewable aldehydes and 2-methylfuran to saturated cyclic oxygenates. Fuel Process Technol 197:106191

    Article  CAS  Google Scholar 

  69. Hronec M, Fulajtárova K, Liptaj T, Prónayová N, Soták T (2015) Bio-derived fuel additives from furfural and cyclopentanone. Fuel Process Technol 138:564–569

    Article  CAS  Google Scholar 

  70. Garcia-Perez M, Shen J, Wang XS, Li C-Z (2010) Production and fuel properties of fast pyrolysis oil/bio-diesel blends. Fuel Process Technol 91(3):296–305

    Article  CAS  Google Scholar 

  71. Galadima A, Muraza O (2019) Advances in catalyst design for the conversion of methane to aromatics: a critical review. Catal Surv Asia 23(3):149–170

    Article  CAS  Google Scholar 

  72. García-Cicourel AR, Janssen H-G (2019) Direct analysis of aromatic hydrocarbons in purified mineral oils for foods and cosmetics applications using gas chromatography with vacuum ultraviolet detection. J Chromatogr A 1590:113–120

    Article  PubMed  Google Scholar 

  73. Grandmaison J-L, Chantal PD, Kaliaguine SC (1990) Conversion of furanic compounds over H-ZSM-5 zeolite. Fuel 69(8):1058–1061

    Article  CAS  Google Scholar 

  74. B Karushaar HK, H Schrubbers, G Schulz-Ekloff (1985) Acta Physica Et Chemica. Hydrodeoxygenation of Furan on H-ZSM-5 and Pt-ZSM-5. Acta Physica Et Chemica

  75. Cheng Y-T, Huber GW (2011) Chemistry of furan conversion into aromatics and olefins over HZSM-5: a model biomass conversion reaction. ACS Catal 1(6):611–628

    Article  CAS  Google Scholar 

  76. Cheng Z, Tan Y, Wei L, Xing L, Yang J, Zhang L et al (2017) Experimental and kinetic modeling studies of furan pyrolysis: fuel decomposition and aromatic ring formation. Fuel 206:239–247

    Article  CAS  Google Scholar 

  77. McEnally CS, Pfefferle LD, Atakan B, Kohse-Höinghaus K (2006) Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Prog Energy Combust Sci 32(3):247–294

    Article  CAS  Google Scholar 

  78. Cheng Z, Niu Q, Wang Z, Jin H, Chen G, Yao M et al (2017) Experimental and kinetic modeling studies of low-pressure premixed laminar 2-methylfuran flames. Proc Combust Inst 36(1):1295–1302

    Article  CAS  Google Scholar 

  79. Cheng Z, He S, Xing L, Wei L, Li W, Li T et al (2017) Experimental and kinetic modeling study of 2-methylfuran pyrolysis at low and atmospheric pressures. Energy Fuels 31(1):896–903

    Article  CAS  Google Scholar 

  80. Hansen N, Miller JA, Westmoreland PR, Kasper T, Kohse-Höinghaus K, Wang J et al (2009) Isomer-specific combustion chemistry in allene and propyne flames. Combust Flame 156(11):2153–2164

    Article  CAS  Google Scholar 

  81. Blanquart G, Pepiot-Desjardins P, Pitsch H (2009) Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust Flame 156(3):588–607

    Article  CAS  Google Scholar 

  82. Davies A, Fickel D, van Iersel M (2018) Process for producing benzene from a C5-C12 hydrocarbon mixture. Google Patents.

  83. Otterstedt J, Gevert S, Jäås S, Menon P (1986) Fluid catalytic cracking of heavy (residual) oil fractions: a review. Appl Catal 22(2):159–179

    Article  CAS  Google Scholar 

  84. Akah A (2017) Application of rare earths in fluid catalytic cracking: a review. J Rare Earths 35(10):941–956

    Article  CAS  Google Scholar 

  85. Biswas J, Maxwell I (1990) Recent process-and catalyst-related developments in fluid catalytic cracking. Appl Catal 63(1):197–258

    Article  CAS  Google Scholar 

  86. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398(1–2):1–17

    Article  CAS  Google Scholar 

  87. Sadrameli S (2016) Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel 173:285–297

    Article  CAS  Google Scholar 

  88. Song C, Liu S, Li X, Xie S, Liu Z, Xu L (2014) Influence of reaction conditions on the aromatization of cofeeding n-butane with methanol over the Zn loaded ZSM-5/ZSM-11 zeolite catalyst. Fuel Process Technol 126:60–65

    Article  CAS  Google Scholar 

  89. Ishaq M, Arsala Khan M, Yashima T (1998) Transformation of n-butane over HZSM-5 and other MFI type zeolites. Fuel Process Technol 56(3):169–181

    Article  CAS  Google Scholar 

  90. Wei Z, Chen L, Cao Q, Wen Z, Zhou Z, Xu Y et al (2017) Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability. Fuel Process Technol 162:66–77

    Article  CAS  Google Scholar 

  91. Lu Q, Guo H-Q, Zhou M-X, Cui M-S, Dong C-Q, Yang Y-P (2018) Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo2N/HZSM-5 catalyst. Fuel Process Technol 173:134–142

    Article  CAS  Google Scholar 

  92. Zheng L, Xuan D, Guo J, Lou H, Zheng X (2006) Non-oxidative aromatization of CH4-C3H8 over La-promoted Zn/HZSM-5 catalysts. J Nat Gas Chem 15(1):52–57

    Article  Google Scholar 

  93. Guisnet M, Gnep NS, Aittaleb D, Doyemet YJ (1992) Conversion of light alkanes into aromatic hydrocarbons: VI. Aromatization of C2-C4 alkanes on H-ZSM-5—reaction mechanisms. Appl Catal 87(2):255–70.

  94. Corbetta M, Manenti F, Pirola C, Tsodikov MV, Chistyakov AV (2014) Aromatization of propane: techno-economic analysis by multiscale “kinetics-to-process” simulation. Comput Chem Eng 71:457–466

    Article  CAS  Google Scholar 

  95. Guisnet M, Gnep NS (1996) Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Appl Catal A 146(1):33–64.

  96. Yang W, Yang P, Xu X, Lin L (2000) Propane aromatization in a silicalite-1 membrane reactor. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in surface science and catalysis. Elsevier, pp 2699–2704

    Google Scholar 

  97. Wan H, Zhang R, Qin Y, Lu C, Zhang X, Song L (2015) Morphology control and aromatization of ZSM-5/KL composite zeolite. J Petrochem Univ 28(1):1–6

    CAS  Google Scholar 

  98. Wan H, Zhang X, Zhang R, Zhang X, Song L (2014) Synthesis of high performance ZSM-5-L composite zeolite and its catalytic properities for n-pentane aromatization. Chem J Chin Univ 35(10):2220–2226

    CAS  Google Scholar 

  99. Zhang R, Wan H, Zhang L, Song L (2015) Synthesis of bimetal ZSM-5/L composite zeolite and its catalytic performance for aromatization reaction. Pet Process Petrochem 46(7):67–72

    Google Scholar 

  100. Niu MYL (1999) The effect of impegnation sequence of modifiers on the n-pentane aromatization over Zn-M-HZSM-5 catalysts. J Jiangsu Inst Petrochem Technol (1)

  101. Kawamata Y, Ishimaru H, Yamaguchi K, Yoshikawa T, Koyama Y, Nakasaka Y et al (2020) Catalytic cracking of lignin model compounds and degraded lignin dissolved in inert solvent over mixed catalyst of iron oxide and MFI zeolite for phenol recovery. Fuel Process Technol 197:106190

    Article  CAS  Google Scholar 

  102. Shirasaki Y, Nasu H, Hashimoto T, Ishihara A (2019) Effects of types of zeolite and oxide and preparation methods on dehydrocyclization-cracking of soybean oil using hierarchical zeolite-oxide composite-supported Pt/NiMo sulfided catalysts. Fuel Process Technol 194:106109

    Article  CAS  Google Scholar 

  103. Sonthisawate T, Nakanishi T, Nasu H, Hashimoto T, Ishihara A (2016) Catalytic cracking reaction of vacuum gas oil and atmospheric residue by zeolite-containing microporous and mesoporous composites using Curie point pyrolyzer. Fuel Process Technol 142:337–344

    Article  CAS  Google Scholar 

  104. Ishihara A (2019) Preparation and reactivity of hierarchical catalysts in catalytic cracking. Fuel Process Technol 194:106116

    Article  CAS  Google Scholar 

  105. Ihm S-K, Yi K-H, Park Y-K (1994) Aromatization of n-pentane over Ni-ZSM-5 catalysts. In: Weitkamp J, Karge HG, Pfeifer H, Hölderich W (eds) Studies in surface science and catalysis. Elsevier, pp 1765–1772

    Google Scholar 

  106. Imai H, Abe M, Terasaka K, Yamazaki H, Osuga R, Kondo JN et al (2020) Hydroconversion of methyl laurate over beta-zeolite-supported Ni–Mo catalysts: effect of acid and base treatments of beta zeolite. Fuel Process Technol 197:106182

    Article  CAS  Google Scholar 

  107. Kostyniuk A, Key D, Mdleleni M (2019) 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: effects of transition metals addition on the catalytic performance. J Energy Inst.

  108. Lima PM, Garetto T, Cavalcante CL, Cardoso D (2011) Isomerization of n-hexane on Pt–Ni catalysts supported on nanocrystalline H-BEA zeolite. Catal Today 172(1):195–202

    Article  CAS  Google Scholar 

  109. Jordão MH, Simões V, Montes A, Cardoso D (2000) Bifunctional Ni, Pt zeolite catalysts for the isomerization of n-hexane. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in surface science and catalysis. Elsevier, pp 2387–2392

    Google Scholar 

  110. Dong C, Yin C, Wu T, Wu Z, Liu D, Liu C (2019) Effect of β-zeolite nanoclusters on the acidity and hydrodesulfurization activity of an unsupported NiMo catalyst. Catal Commun 119:164–169

    Article  CAS  Google Scholar 

  111. Lee S-U, Lee Y-J, Kim J-R, Jeong S-Y (2018) Tactical control of Ni-loading over W-supported Beta zeolite catalyst for selective ring opening of 1-methylnaphthalene. J Ind Eng Chem 66:279–287

    Article  CAS  Google Scholar 

  112. Hodala JL, Halgeri AB, Shanbhag GV, Reddy RS, Choudary NV, Rao PV et al (2016) Aromatization of C5-rich light naphtha feedstock over tailored zeolite catalysts: comparison with model compounds (n-C5-n-C7). ChemistrySelect 1(10):2515–2521

    Article  CAS  Google Scholar 

  113. Nguyen NT, Kang KH, Lee CW, Kim GT, Park S, Park Y-K (2019) Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene. Fuel 235:677–686

    Article  CAS  Google Scholar 

  114. Lee J, Hong UG, Hwang S, Youn MH, Song IK (2013) Production of light olefins through catalytic cracking of C5 raffinate over carbon-templated ZSM-5. Fuel Process Technol 108:25–30

    Article  CAS  Google Scholar 

  115. Lee J, Hong UG, Hwang S, Youn MH, Song IK (2013) Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: effect of lanthanum content. Fuel Process Technol 109:189–195

    Article  CAS  Google Scholar 

  116. Hou X, Qiu Y, Tian Y, Diao Z, Zhang X, Liu G (2018) Reaction pathways of n-pentane cracking on the fresh and regenerated Sr, Zr and La-loaded ZSM-5 zeolites. Chem Eng J 349:297–308

    Article  CAS  Google Scholar 

  117. Hou X, Qiu Y, Zhang X, Liu G (2017) Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins. Chem Eng J 307:372–381

    Article  CAS  Google Scholar 

  118. Hou X, Zhu W, Tian Y, Qiu Y, Diao Z, Feng F et al (2019) Superiority of ZrO2 surface enrichment on ZSM-5 zeolites in n-pentane catalytic cracking to produce light olefins. Microporous Mesoporous Mater 276:41–51

    Article  CAS  Google Scholar 

  119. Smiešková A, Rojasová E, Hudec P, Šabo L (2004) Aromatization of light alkanes over ZSM-5 catalysts: Influence of the particle properties of the zeolite. Appl Catal A 268(1):235–240

    Article  Google Scholar 

  120. Akhtar MN, Al-Yassir N, Al-Khattaf S, Čejka J (2012) Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite. Catal Today 179(1):61–72

    Article  CAS  Google Scholar 

  121. Li Q, Zhang F, Jarvis J, He P, Yung MM, Wang A et al (2018) Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane. Fuel 219:331–339

    Article  CAS  Google Scholar 

  122. Lee K, Choi M (2016) Hierarchically micro-/mesoporous Pt/KL for alkane aromatization: synergistic combination of high catalytic activity and suppressed hydrogenolysis. J Catal 340:66–75

    Article  CAS  Google Scholar 

  123. Sirokman G, Sendoda Y, Ono Y (1986) Conversion of pentane into aromatics over ZSM—5 zeolites. Zeolites 6(4):299–303

    Article  CAS  Google Scholar 

  124. Tamiyakul S, Sooknoi T, Lobban LL, Jongpatiwut S (2016) Generation of reductive Zn species over Zn/HZSM–5 catalysts for n–pentane aromatization. Appl Catal A 525:190–196

    Article  CAS  Google Scholar 

  125. Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W et al (2014) Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous Mesoporous Mater 197:252–261

    Article  CAS  Google Scholar 

  126. Tamiyakul S, Ubolcharoen W, Tungasmita DN, Jongpatiwut S (2015) Conversion of glycerol to aromatic hydrocarbons over Zn-promoted HZSM-5 catalysts. Catal Today 256(P2):325–335

    Article  CAS  Google Scholar 

  127. Tamiyakul S, Anutamjarikun S, Jongpatiwut S (2016) The effect of Ga and Zn over HZSM-5 on the transformation of palm fatty acid distillate (PFAD) to aromatics. Catal Commun 74:49–54

    Article  CAS  Google Scholar 

  128. Matsuoka A, Kim J-B, Inui T (2000) Selectivity improvement in the aromatization of C2–C5 alkanes using polyfunctional metallosilicate catalysts. Microporous Mesoporous Mater 35–36:89–98

    Article  Google Scholar 

  129. Zhang P, Yang Y, Li Z, Liu B, Hu C (2019) Preparation, characterization and naphtha aromatization performance of the catalytic reforming catalyst Pt/MY (M = Mg, Ba or Ce). Catal Today.

  130. Kim YH, Lee KH, Lee JS (2011) The effect of pre-coking and regeneration on the activity and stability of Zn/ZSM-5 in aromatization of 2-methyl-2-butene. Catal Today 178(1):72–78

    Article  CAS  Google Scholar 

  131. Bhat YS, Das J, Halgeri AB (1995) n-Pentane aromatization over pore size regulated MFI zeolite: enrichment of para-xylene content in xylenes. Appl Catal A 130(1):L1–L4

    Article  CAS  Google Scholar 

  132. Anunziata OA, González Mercado G, Pierella LB (2004) Improvement of methane activation using n-hexane as co-reactant over Zn/HZSM-11 zeolite. Catal Commun 5(8):401–405

    Article  CAS  Google Scholar 

  133. Luzgin MV, Rogov VA, Arzumanov SS, Toktarev AV, Stepanov AG, Parmon VN (2009) Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher alkane: how does it occur? Catal Today 144(3):265–272

    Article  CAS  Google Scholar 

  134. He P, Gatip R, Yung M, Zeng H, Song H (2017) Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature. Appl Catal B 211:275–288

    Article  CAS  Google Scholar 

  135. Choudhary VR, Mondal KC, Mulla SAR (2005) Simultaneous conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites. Angew Chem 117(28):4455–4459

    Article  Google Scholar 

  136. Wang A, He P, Yung M, Zeng H, Qian H, Song H (2016) Catalytic co-aromatization of ethanol and methane. Appl Catal B 198:480–492

    Article  CAS  Google Scholar 

  137. Wang A, Austin D, Karmakar A, Bernard GM, Michaelis VK, Yung MM et al (2017) Methane upgrading of acetic acid as a model compound for a biomass-derived liquid over a modified zeolite catalyst. ACS Catal 7(5):3681–3692

    Article  CAS  Google Scholar 

  138. He P, Shan W, Xiao Y, Song H (2016) Performance of Zn/ZSM-5 for in situ catalytic upgrading of pyrolysis bio-oil by methane. Top Catal 59(1):86–93

    Article  CAS  Google Scholar 

  139. He P, Song H (2014) Catalytic conversion of biomass by natural gas for oil quality upgrading. Ind Eng Chem Res 53(41):15862–15870

    Article  CAS  Google Scholar 

  140. Peng H, Wang A, He P, Harrhy J, Meng S, Song H (2019) Solvent-free catalytic conversion of xylose with methane to aromatics over Zn-Cr modified zeolite catalyst. Fuel 253:988–996

    Article  CAS  Google Scholar 

  141. Austin D, Wang A, Harrhy JH, Mao X, Zeng H, Song H (2018) Catalytic aromatization of acetone as a model compound for biomass-derived oil under a methane environment. Catal Sci Technol 8(19):5104–5114

    Article  CAS  Google Scholar 

  142. Wang A, Austin D, Qian H, Zeng H, Song H (2018) Catalytic valorization of furfural under methane environment. ACS Sustain Chem Eng 6(7):8891–8903

    Article  CAS  Google Scholar 

  143. Yang Z, Kumar A, Apblett A (2016) Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts. J Anal Appl Pyrol 120:484–492

    Article  CAS  Google Scholar 

  144. Srinivasan V, Adhikari S, Chattanathan SA, Park S (2012) Catalytic pyrolysis of torrefied biomass for hydrocarbons production. Energy Fuels 26(12):7347–7353

    Article  CAS  Google Scholar 

  145. Tshikesho RS, Kumar A, Huhnke RL, Apblett A (2019) Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil. Biores Technol 285:121299

    Article  CAS  Google Scholar 

  146. Wijaya YP, Kristianto I, Lee H, Jae J (2016) Production of renewable toluene from biomass-derived furans via Diels-Alder and dehydration reactions: a comparative study of Lewis acid catalysts. Fuel 182:588–596

    Article  CAS  Google Scholar 

  147. Uslamin EA, Luna-Murillo B, Kosinov N, Bruijnincx PCA, Pidko EA, Weckhuysen BM et al (2019) Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chem Eng Sci 198:305–316

    Article  CAS  Google Scholar 

  148. Pacheco JJ, Labinger JA, Sessions AL, Davis ME (2015) Route to renewable PET: reaction pathways and energetics of Diels-Alder and dehydrative aromatization reactions between ethylene and biomass-derived furans catalyzed by Lewis acid molecular sieves. ACS Catal 5(10):5904–5913

    Article  CAS  Google Scholar 

  149. Song S, Wu G, Dai W, Guan N, Li L (2016) Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids. J Mol Catal A: Chem 420:134–141

    Article  CAS  Google Scholar 

  150. Wang D, Osmundsen CM, Taarning E, Dumesic JA (2013) Selective production of aromatics from alkylfurans over solid acid catalysts. ChemCatChem 5(7):2044–2050

    Article  CAS  Google Scholar 

  151. Sauer J (1967) Diels-Alder reactions II: the reaction mechanism. Angew Chem, Int Ed Engl 6(1):16–33

    Article  CAS  Google Scholar 

  152. Fraile JM, García JI, Gómez MA, De La Hoz A, Mayoral JA, Moreno A et al (2001) Tandem Diels-Alder aromatization reactions of furans under unconventional reaction conditions—experimental and theoretical studies. Eur J Org Chem 15:2891–2899

    Article  Google Scholar 

  153. McGlone J, Priecel P, Da Vià L, Majdal L, Lopez-Sanchez J (2018) Desilicated ZSM-5 zeolites for the production of renewable p-Xylene via Diels-Alder cycloaddition of dimethylfuran and ethylene. Catalysts 8(6):253

    Article  Google Scholar 

  154. Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG et al (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2(6):935–939

    Article  CAS  Google Scholar 

  155. Nikbin N, Do PT, Caratzoulas S, Lobo RF, Dauenhauer PJ, Vlachos DG (2013) A DFT study of the acid-catalyzed conversion of 2, 5-dimethylfuran and ethylene to p-xylene. J Catal 297:35–43

    Article  CAS  Google Scholar 

  156. Shiramizu M, Toste FD (2011) On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2, 5-dimethylfuran and acrolein into p-xylene. Chemistry 17(44):12452–12457

    Article  CAS  PubMed  Google Scholar 

  157. Chang C-C, Green SK, Williams CL, Dauenhauer PJ, Fan W (2014) Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem 16(2):585–588

    Article  CAS  Google Scholar 

  158. Brandvold TA (2012) Carbohydrate route to para-xylene and terephthalic acid. Google Patents

  159. Do PT, McAtee JR, Watson DA, Lobo RF (2012) Elucidation of Diels-Alder reaction network of 2, 5-dimethylfuran and ethylene on HY zeolite catalyst. ACS Catal 3(1):41–46

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kim J-C, Kim T-W, Kim Y, Ryoo R, Jeong S-Y, Kim C-U (2017) Mesoporous MFI zeolites as high performance catalysts for Diels-Alder cycloaddition of bio-derived dimethylfuran and ethylene to renewable p-xylene. Appl Catal B 206:490–500

    Article  CAS  Google Scholar 

  161. Wijaya YP, Suh DJ, Jae J (2015) Production of renewable p-xylene from 2, 5-dimethylfuran via Diels-Alder cycloaddition and dehydrative aromatization reactions over silica− alumina aerogel catalysts. Catal Commun 70:12–16

    Article  CAS  Google Scholar 

  162. Rohling RY, Uslamin E, Zijlstra B, Tranca IC, Filot IA, Hensen EJ et al (2017) An active alkali-exchanged faujasite catalyst for p-xylene production via the one-pot Diels–Alder cycloaddition/dehydration reaction of 2, 5-dimethylfuran with ethylene. ACS Catal 8(2):760–769

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wijaya YP, Winoto HP, Park Y-K, Suh DJ, Lee H, Ha J-M et al (2017) Heteropolyacid catalysts for Diels-Alder cycloaddition of 2, 5-dimethylfuran and ethylene to renewable p-xylene. Catal Today 293:167–175

    Article  Google Scholar 

  164. Patet RE, Nikbin N, Williams CL, Green SK, Chang C-C, Fan W et al (2015) Kinetic regime change in the tandem dehydrative aromatization of furan Diels-Alder products. ACS Catal 5(4):2367–2375

    Article  CAS  Google Scholar 

  165. Lyons TW, Guironnet D, Findlater M, Brookhart M (2012) Synthesis of p-xylene from ethylene. J Am Chem Soc 134(38):15708–15711

    Article  CAS  PubMed  Google Scholar 

  166. Williams CL, Vinter KP, Chang C-C, Xiong R, Green SK, Sandler SI et al (2016) Kinetic regimes in the tandem reactions of H-BEA catalyzed formation of p-xylene from dimethylfuran. Catal Sci Technol 6(1):178–187

    Article  Google Scholar 

  167. Williams CL, Vinter KP, Patet RE, Chang C-C, Nikbin N, Feng S et al (2016) Inhibition of xylene isomerization in the production of renewable aromatic chemicals from biomass-derived furans. ACS Catal 6(3):2076–2088

    Article  CAS  Google Scholar 

  168. Masih D, Rohani S, Kondo JN, Tatsumi T (2019) Catalytic dehydration of ethanol-to-ethylene over Rho zeolite under mild reaction conditions. Microporous Mesoporous Mater 282:91–99

    Article  CAS  Google Scholar 

  169. Xu C, Zhou C, Wang S, Huang A (2019) Copper-exchanged LTA zeolite membranes with enhanced water flux for ethanol dehydration. Chin Chem Lett 30(6):1204–1206

    Article  CAS  Google Scholar 

  170. Bukowski BC, Bates JS, Gounder R, Greeley J (2018) First principles, microkinetic, and experimental analysis of Lewis acid site speciation during ethanol dehydration on Sn-Beta zeolites. J Catal 365:261–276

    Article  CAS  Google Scholar 

  171. Soh JC, Chong SL, Hossain SS, Cheng CK (2017) Catalytic ethylene production from ethanol dehydration over non-modified and phosphoric acid modified Zeolite H-Y (80) catalysts. Fuel Process Technol 158:85–95

    Article  CAS  Google Scholar 

  172. Gołąbek K, Tarach KA, Filek U, Góra-Marek K (2018) Ethylene formation by dehydration of ethanol over medium pore zeolites. Spectrochim Acta Part A Mol Biomol Spectrosc 192:464–472

    Article  Google Scholar 

  173. Teixeira IF, Lo BT, Kostetskyy P, Stamatakis M, Ye L, Tang CC et al (2016) From biomass-derived furans to aromatics with ethanol over zeolite. Angew Chem Int Ed 55(42):13061–13066

    Article  CAS  Google Scholar 

  174. Wang C, Si Z, Wu X, Lv W, Bi K, Zhang X et al (2019) Mechanism study of aromatics production from furans with methanol over zeolite catalysts. J Anal Appl Pyrol 139:87–95

    Article  CAS  Google Scholar 

  175. Rezaei PS, Shafaghat H, Daud WMAW (2014) Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl Catal A 469:490–511

    Article  CAS  Google Scholar 

  176. Hajimirzaee S, Ainte M, Soltani B, Behbahani RM, Leeke GA, Wood J (2015) Dehydration of methanol to light olefins upon zeolite/alumina catalysts: effect of reaction conditions, catalyst support and zeolite modification. Chem Eng Res Des 93:541–553

    Article  CAS  Google Scholar 

  177. Fu T, Ma Z, Wang Y, Shao J, Ma Q, Zhang C et al (2019) Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesize nano-ZSM-5 catalyst for MTH reaction. Fuel Process Technol 194:106122

    Article  CAS  Google Scholar 

  178. Qi R, Fu T, Wan W, Li Z (2017) Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Process Technol 155:191–199

    Article  CAS  Google Scholar 

  179. Niu X, Gao J, Wang K, Miao Q, Dong M, Wang G et al (2017) Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics. Fuel Process Technol 157:99–107

    Article  CAS  Google Scholar 

  180. Li J, Han D, He T, Liu G, Zi Z, Wang Z et al (2019) Nanocrystal H[Fe, Al]ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline. Fuel Process Technol 191:104–110

    Article  CAS  Google Scholar 

  181. Adebajo MO, Long MA (2003) The contribution of the methanol-to-aromatics reaction to benzene methylation over ZSM-5 catalysts. Catal Commun 4(2):71–76

    Article  CAS  Google Scholar 

  182. Xin Y, Qi P, Duan X, Lin H, Yuan Y (2013) Enhanced performance of Zn–Sn/HZSM-5 catalyst for the conversion of methanol to aromatics. Catal Lett 143(8):798–806

    Article  CAS  Google Scholar 

  183. Al-Yassir N, Akhtar M, Al-Khattaf S (2012) Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5. J Porous Mater 19(6):943–960

    Article  CAS  Google Scholar 

  184. Ausavasukhi A, Sooknoi T (2014) Tunable activity of [Ga]HZSM-5 with H2 treatment: ethane dehydrogenation. Catal Commun 45:63–68

    Article  CAS  Google Scholar 

  185. Choudhary VR, Kinage AK, Sivadinarayana C, Devadas P, Sansare SD, Guisnet M (1996) H-gallosilicate (MFI) propane aromatization catalyst: influence of Si/Ga ratio on acidity, activity and deactivation due to coking. J Catal 158(1):34–50

    Article  CAS  Google Scholar 

  186. Choudhary TV, Kinage A, Banerjee S, Choudhary VR (2006) Influence of Si/Ga and Si/Al ratios on propane aromatization over highly active H-GaAlMFI. Catal Commun 7(3):166–169

    Article  CAS  Google Scholar 

  187. Wannapakdee W, Wattanakit C, Paluka V, Yutthalekha T, Limtrakul J (2016) One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization. RSC Adv 6(4):2875–2881

    Article  CAS  Google Scholar 

  188. Fricke R, Kosslick H, Lischke G, Richter M (2000) Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem Rev 100(6):2303–2406

    Article  CAS  PubMed  Google Scholar 

  189. Wannapakdee W, Suttipat D, Dugkhuntod P, Yutthalekha T, Thivasasith A, Kidkhunthod P et al (2019) Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel 236:1243–1253

    Article  CAS  Google Scholar 

  190. Sattler JJ, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653

    Article  CAS  PubMed  Google Scholar 

  191. Lukyanov DB, Vazhnova T (2006) Active sites in working bifunctional GaH-TON aromatization catalysts: kinetic evaluation. J Phys Chem B 110(37):18473–18480

    Article  CAS  PubMed  Google Scholar 

  192. Migliori M, Aloise A, Catizzone E, Caravella A, Giordano G (2017) Simplified kinetic modeling of propane aromatization over Ga-ZSM-5 zeolites: comparison with experimental data. Ind Eng Chem Res 56(37):10309–10317

    Article  CAS  Google Scholar 

  193. Bhattacharya D, Sivasanker S (1996) Aromatization of n-hexane over H-ZSM-5: influence of promoters and added gases. Appl Catal A 141(1–2):105–115

    Article  CAS  Google Scholar 

  194. Ausavasukhi A, Sooknoi T (2014) Tunable activity of [Ga] HZSM-5 with H2 treatment: ethane dehydrogenation. Catal Commun 45:63–68

    Article  CAS  Google Scholar 

  195. Nowak I, Quartararo J, Derouane EG, Védrine JC (2003) Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Appl Catal A 251(1):107–120

    Article  CAS  Google Scholar 

  196. Biscardi JA, Iglesia E (1996) Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5. Catal Today 31(3–4):207–231

    Article  CAS  Google Scholar 

  197. Pereira MS, Chaer Nascimento MA (2006) Theoretical study on the dehydrogenation reaction of alkanes catalyzed by zeolites containing nonframework gallium species. J Phys Chem B 110(7):3231–3238

    Article  CAS  PubMed  Google Scholar 

  198. Li Y-P, Head-Gordon M, Bell AT (2014) Computational study of p-xylene synthesis from ethylene and 2, 5-dimethylfuran catalyzed by H-BEA. J Phys Chem C 118(38):22090–22095

    Article  CAS  Google Scholar 

  199. Patet RE, Koehle M, Lobo RF, Caratzoulas S, Vlachos DG (2017) General acid-type catalysis in the dehydrative aromatization of furans to aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA zeolites. J Phys Chem C 121(25):13666–13679

    Article  CAS  Google Scholar 

  200. Uslamin EA, Kosinov NA, Pidko EA, Hensen EJ (2018) Catalytic conversion of furanic compounds over Ga-modified ZSM-5 zeolites as a route to biomass-derived aromatics. Green Chem 20(16):3818–3827

    Article  CAS  Google Scholar 

  201. Xin M, Xing E, Gao X, Wang Y, Ouyang Y, Xu G et al (2019) Ga Substitution during modification of ZSM-5 and its influences on catalytic aromatization performance. Ind Eng Chem Res 58(17):6970–6981

    Article  CAS  Google Scholar 

  202. Choudhary VR, Mantri K, Sivadinarayana C (2000) Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H–ZSM-5. Microporous Mesoporous Mater 37(1–2):1–8

    Article  CAS  Google Scholar 

  203. Choudhary VR, Devadas P, Banerjee S, Kinage AK (2001) Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts. Microporous Mesoporous Mater 47(2–3):253–267

    Article  CAS  Google Scholar 

  204. Kumar N, Lindfors L-E (1996) Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane. Appl Catal A 147(1):175–187

    Article  CAS  Google Scholar 

  205. Tshabalala TE, Scurrell MS (2015) Aromatization of n-hexane over Ga, Mo and Zn modified H-ZSM-5 zeolite catalysts. Catal Commun 72:49–52

    Article  CAS  Google Scholar 

  206. Li Q, He P, Jarvis J, Bhattacharya A, Mao X, Wang A et al (2018) Catalytic co-aromatization of methane and heptane as an alkane model compound over Zn-Ga/ZSM-5: a mechanistic study. Appl Catal B 236:13–24

    Article  CAS  Google Scholar 

  207. Meyer PA, Snowden-Swan LJ, Jones SB, Rappé KG, Hartley DS (2020) The effect of feedstock composition on fast pyrolysis and upgrading to transportation fuels: Techno-economic analysis and greenhouse gas life cycle analysis. Fuel 259:116218

    Article  CAS  Google Scholar 

  208. Mohseni-Bandpei A, Majlesi M, Rafiee M, Nojavan S, Nowrouz P, Zolfagharpour H (2019) Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste. Chemosphere 227:277–288

    Article  CAS  PubMed  Google Scholar 

  209. Li H, Li L, Zhang R, Tong D, Hu C (2014) Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. J Energy Chem 23(6):732–741

    Article  Google Scholar 

  210. Kandasamy S, Devarayan K, Bhuvanendran N, Zhang B, He Z, Narayanan M et al (2021) Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts. J Environ Chem Eng 9(4):105321

    Article  CAS  Google Scholar 

  211. Masudi A, Muraza O (2018) Vegetable oil to biolubricants: review on advanced porous catalysts. Energy Fuels 32(10):10295–10310

    Article  CAS  Google Scholar 

  212. Chen W-H, Cheng C-L, Lee K-T, Lam SS, Ong HC, Ok YS et al (2021) Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere 271:129510

    Article  CAS  PubMed  Google Scholar 

  213. Park HJ, Jeon J-K, Suh DJ, Suh Y-W, Heo HS, Park Y-K (2011) Catalytic vapor cracking for improvement of bio-oil quality. Catal Surv Asia 15(3):161–180

    Article  CAS  Google Scholar 

  214. Park HC, Choi HS (2019) Fast pyrolysis of biomass in a spouted bed reactor: hydrodynamics, heat transfer and chemical reaction. Renewable Energy 143:1268–1284

    Article  CAS  Google Scholar 

  215. Patil V, Tran K-Q, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yerrayya A, Natarajan U, Vinu R (2019) Fast pyrolysis of guaiacol to simple phenols: experiments, theory and kinetic model. Chem Eng Sci 207:619–630

    Article  CAS  Google Scholar 

  217. Pastor-Pérez L, Jin W, Villora-Picó JJ, Wang Q, Mercedes Pastor-Blas M, Sepúlveda-Escribano A et al (2021) “H2-free” demethoxylation of guaiacol in subcritical water using Pt supported on N-doped carbon catalysts: a cost-effective strategy for biomass upgrading. J Energy Chem 58:377–385

    Article  Google Scholar 

  218. Bertero M, Sedran U (2013) Upgrading of bio-oils over equilibrium FCC catalysts. Contribution from alcohols, phenols and aromatic ethers. Catal Today 212:10–15

    Article  CAS  Google Scholar 

  219. Bertero M, Puente GDL, Sedran U (2013) Products and coke from the conversion of bio-oil acids, esters, aldehydes and ketones over equilibrium FCC catalysts. Renew Energy 60:349–354

    Article  CAS  Google Scholar 

  220. Graça I, Ribeiro FR, Cerqueira HS, Lam YL, de Almeida MBB (2009) Catalytic cracking of mixtures of model bio-oil compounds and gasoil. Appl Catal B 90(3–4):556–563

    Article  Google Scholar 

  221. Lindfors C, Paasikallio V, Kuoppala E, Reinikainen M, Oasmaa A, Solantausta Y (2015) Co-processing of dry bio-oil, catalytic pyrolysis oil, and hydrotreated bio-oil in a micro activity test unit. Energy Fuels 29(6):3707–3714

    Article  CAS  Google Scholar 

  222. Gueudré L, Chapon F, Mirodatos C, Schuurman Y, Venderbosch R, Jordan E et al (2017) Optimizing the bio-gasoline quantity and quality in fluid catalytic cracking co-refining. Fuel 192:60–70

    Article  Google Scholar 

  223. Fogassy G, Thegarid N, Toussaint G, van Veen AC, Schuurman Y, Mirodatos C (2010) Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl Catal B 96(3–4):476–485

    Article  CAS  Google Scholar 

  224. Corma A, Huber GW, Sauvanaud L, O’Connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247(2):307–327

    Article  CAS  Google Scholar 

  225. Naik DV, Kumar V, Prasad B, Behera B, Atheya N, Singh KK et al (2014) Catalytic cracking of pyrolysis oil oxygenates (aliphatic and aromatic) with vacuum gas oil and their characterization. Chem Eng Res Des 92(8):1579–1590

    Article  CAS  Google Scholar 

  226. Zhang Y, Chen P, Lou H (2016) In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM-5. J Energy Chem 25(3):427–433

    Article  Google Scholar 

  227. Agblevor FA, Mante O, McClung R, Oyama ST (2012) Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels. Biomass Bioenerg 45:130–137

    Article  CAS  Google Scholar 

  228. Ibarra A, Rodríguez E, Sedran U, Arandes JM, Bilbao J (2016) Synergy in the cracking of a blend of bio-oil and vacuum gasoil under fluid catalytic cracking conditions. Ind Eng Chem Res 55(7):1872–1880

    Article  CAS  Google Scholar 

  229. Ibarra Á, Veloso A, Bilbao J, Arandes JM, Castaño P (2016) Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions. Appl Catal B 182:336–346

    Article  CAS  Google Scholar 

  230. Hou J, Zhong D, Liu W (2022) Catalytic co-pyrolysis of oil sludge and biomass over ZSM-5 for production of aromatic platform chemicals. Chemosphere 291:132912

    Article  CAS  PubMed  Google Scholar 

  231. Ibarra Á, Hita I, Azkoiti MJ, Arandes JM, Bilbao J (2019) Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. J Ind Eng Chem 78:372–382

    Article  CAS  Google Scholar 

  232. Le-Phuc N, Ngo PT, Ha QLM, Tran TV, Phan TT, Luu LC et al (2020) Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMo/SBA-15 catalyst for co-processing in fluid catalytic cracking process. J Environ Chem Eng 8(2):103552

    Article  CAS  Google Scholar 

  233. Rijo B, Soares Dias AP, Wojnicki Ł (2022) Catalyzed pyrolysis of scrap tires rubber. J Environ Chem Eng 10(1):107037

    Article  CAS  Google Scholar 

  234. Rahman MM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—a review. Fuel Process Technol 180:32–46

    Article  CAS  Google Scholar 

  235. Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241

    Article  CAS  Google Scholar 

  236. Kumar R, Strezov V, Kan T, Weldekidan H, He J (2019) Investigating the effect of Cu/zeolite on deoxygenation of bio-oil from pyrolysis of pine wood. Energy Procedia 160:186–193

    Article  CAS  Google Scholar 

  237. Kumar R, Strezov V, Lovell E, Kan T, Weldekidan H, He J et al (2019) Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. J Anal Appl Pyrol 140:148–160

    Article  CAS  Google Scholar 

  238. Hita I, Cordero-Lanzac T, García-Mateos FJ, Azkoiti MJ, Rodríguez-Mirasol J, Cordero T et al (2019) Enhanced production of phenolics and aromatics from raw bio-oil using HZSM-5 zeolite additives for PtPd/C and NiW/C catalysts. Appl Catal B 259:118112

    Article  CAS  Google Scholar 

  239. Zhang S, Zhang H, Liu X, Zhu S, Hu L, Zhang Q (2018) Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Process Technol 175:17–25

    Article  CAS  Google Scholar 

  240. Widayatno WB, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A et al (2016) Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl Catal B 186:166–172

    Article  CAS  Google Scholar 

  241. Hita I, Cordero-Lanzac T, Bonura G, Cannilla C, Arandes JM, Frusteri F et al (2019) Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. J Ind Eng Chem 80:392–400

    Article  CAS  Google Scholar 

  242. Widayatno WB, Guan G, Rizkiana J, Du X, Hao X, Zhang Z et al (2015) Selective catalytic conversion of bio-oil over high-silica zeolites. Biores Technol 179:518–523

    Article  CAS  Google Scholar 

  243. Uslamin EA, Kosinov N, Filonenko GA, Mezari B, Pidko E, Hensen EJM (2019) Co-Aromatization of furan and methanol over ZSM-5—a pathway to bio-aromatics. ACS Catal 9(9):8547–8554

    Article  CAS  Google Scholar 

  244. Yung MM, Starace AK, Griffin MB, Wells JD, Patalano RE, Smith KR et al (2019) Restoring ZSM-5 performance for catalytic fast pyrolysis of biomass: effect of regeneration temperature. Catal Today 323:76–85

    Article  CAS  Google Scholar 

  245. Paysepar H, Rao KTV, Yuan Z, Nazari L, Shui H, Xu C (2018) Zeolite catalysts screening for production of phenolic bio-oils with high contents of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis. Fuel Process Technol 178:362–370

    Article  CAS  Google Scholar 

  246. Liu R, Sarker M, Rahman MM, Li C, Chai M, Nishu et al (2020) Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production—a review. Progr Energy Combus Sci 80:100852

    Article  Google Scholar 

  247. Richard R, Julcour C, Manero M-H (2017) Towards a new oxidation process using ozone to regenerate coked catalysts. Ozone 39(5):366–373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the provision of funds by Saudi Aramco for supporting this work as part of the Oil Upgrading theme at King Fahd University of Petroleum and Minerals. O.M. would like to acknowledge a prestigious grant from Saudi Aramco on Oil Upgrading (CENT 2207).

Funding

Funding was provided by Saudi Aramco (CENT 2207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oki Muraza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galadima, A., Masudi, A. & Muraza, O. Towards Extraordinary Catalysts for Aromatization of Biomass and Low-Cost C5 Streams. Catal Surv Asia 26, 221–244 (2022). https://doi.org/10.1007/s10563-022-09364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09364-w

Keywords

Navigation