Skip to main content

Advertisement

Log in

High-pressure Cr3+ R-line luminescence of zoisite and kyanite: a probe of octahedral site distortion

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The Cr3+ luminescence spectra of zoisite and kyanite, two geologically important minerals, were studied up to 40 and 20 GPa, respectively, in various pressure media. Cr3+ substitutes into the octahedral aluminum sites in both minerals and the R-line luminescence is a particularly sensitive site-specific probe of the octahedral Al site. Unlike many previous studies where Cr3+ luminescence was utilized, both these minerals have multiple highly distorted octahedral sites resulting in very large splitting of their R-lines, ~ 300 cm−1 in zoisite and ~ 360 cm−1 in kyanite (for reference, ruby is 29 cm−1). For zoisite, the R-line splitting increases as pressure increases and more than triples from its ambient value by 40 GPa, while the R-line splitting in kyanite from the M1 and M2 sites does not change when compressed in a Ne pressure medium up to 20 GPa. We do not observe evidence of any phase transitions in either zoisite or kyanite across the pressure range of these new luminescence measurements. We present some high-pressure luminescence results where kyanite was known to be bridged between the diamond anvils and show how these spectra illustrate the different effect of uniaxial relative to hydrostatic stress on luminescence spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed-Zaid I, Madon M (1991) A high-pressure form of Al2SiO5 as a possible host of aluminum in the lower mantle. Nature 353(6343):426–428

    Article  Google Scholar 

  • Alvaro M, Angel RJ, Camara F (2012) High-pressure behavior of zoisite. Am Miner 97(7):1165–1176

    Article  Google Scholar 

  • Arlt T, Angel RJ (2000) Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3. Phys Chem Miner 27(10):719–731

    Article  Google Scholar 

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giere R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18(5):551–567

    Article  Google Scholar 

  • Bartram RH, Stoneham AM (1975) Luminescence and absence of luminescence of F centers. Solid State Commun 17(12):1593–1598

    Article  Google Scholar 

  • Burnham CW (1963) Refinement of the crystal structure of kyanite. Zeitschrift Fur Kristallographie 118:337–360

    Article  Google Scholar 

  • Burns R (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Camara F, Gatta GD, Meven M, Pasqual D (2012) Thermal expansion and high temperature structure evolution of zoisite by single-crystal X-ray and neutron diffraction. Phys Chem Miner 39(1):27–45

    Article  Google Scholar 

  • Chai M, Brown JM (1996) Effects of static non-hydrostatic stress on the R lines of ruby single crystals. Geophys Res Lett 23(24):3539–3542

    Article  Google Scholar 

  • Chervin JC, Canny B, Mancinelli M (2001) Ruby-spheres as pressure gauge for optically transparent high pressure cells. Int J High Press Res 21(6):305–314

    Article  Google Scholar 

  • Chopelas A, Nicol M (1982) Pressure dependence to 100 kilobars of the phonons of MgO at 90 K and 295 K. J Geophys Res 87(NB10):8591–8597

    Article  Google Scholar 

  • Comodi P, Zanazzi PF (1997) The pressure behavior of clinozoisite and zoisite: an X-ray diffraction study. Am Miner 82(1–2):61–68

    Article  Google Scholar 

  • Comodi P, Zanazzi PF, Poli S, Schmidt MW (1997) High-pressure behavior of kyanite: compressibility and structural deformations. Am Miner 82(5–6):452–459

    Article  Google Scholar 

  • Czaja M, Marzurak Z, Lukowiak E (1995) Spectroscopic properties and crystal-field analysis of Cr3+ ions in kyanite Al2SiO5. J Appl Spectrosc 62(4):648–655

    Article  Google Scholar 

  • d’Amour H, Schiferl D, Denner W, Schulz H, Holzapfel WB (1978) High-pressure single-crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer. J Appl Phys 49(8):4411–4416

    Article  Google Scholar 

  • Dewaele A, Torrent M, Loubeyre P, Mezouar M (2008) Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations. Phys Rev B 78(10):104102

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Green HW (2007) Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. J Metamorph Geol 25(2):83–96

    Article  Google Scholar 

  • Dollase WA (1968) Refinement and comparison of structures of zoisite and clinozoiste. Am Miner 53(11–1):1882–1898

    Google Scholar 

  • Dollase WA (1969) Crystal structure and cation ordering of piemontite. Am Miner 54(5–6):710–717

    Google Scholar 

  • Dollase WA (1971) Refinement of the crystal structures of epidote, allanite, and hancockite. Am Miner 56(3–4):447–464

    Google Scholar 

  • Dollase WA (1973) Mössbauer spectra and iron distribution in epidote-group minerals. Zeitschrift Fur Kristallographie 138:41–63

    Article  Google Scholar 

  • Finger LW, Hazen RM (1978) Crystal-structure and compression of ruby to 46 kbar. J Appl Phys 49(12):5823–5826

    Article  Google Scholar 

  • Forneris JF, Holloway JR (2003) Phase equilibria in subducting basaltic crust: implications for H2O release from the slab. Earth Planet Sci Lett 214(1–2):187–201

    Article  Google Scholar 

  • Forneris JF, Holloway JR (2004) Evolution of mineral compositions during eclogitization of subducting basaltic crust. Am Miner 89(10):1516–1524

    Article  Google Scholar 

  • Fresenko EG, Rumanova IM, Belov NV (1955) The crystal structure of zoiste. Dokl Acad Sci USSR 102:275–278

    Google Scholar 

  • Friedrich A, Kunz M, Winkler B, Le Bihan T (2004) High-pressure behavior of sillimanite and kyanite: compressibility, decomposition and indications of a new high-pressure phase. Zeitschrift Fur Kristallographie 219(6):324–329

    Google Scholar 

  • Gaft M, Nagli L, Panczer G, Rossman G (2013) Long-lived laser induced time-resolved luminescence of Cr3+ in kyanite Al2SiO5. J Spectrosc Dynamics 3:22–29

    Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2015) Modern luminescece spectroscopy of minerals and materials. Springer, Zug

    Book  Google Scholar 

  • Gao J, Wu WH, Jia LH, Wang CP, Liu YX, Xu CW, Chen F, Fei CH, Su W (2020) Raman and infrared spectra to monitor the phase transition of natural kyanite under static compression. J Raman Spectrosc 51(10):2102–2111

    Article  Google Scholar 

  • Ghose S, Tsang T (1971) Ordering of V2+, Mn2+ and Fe3+ ions in zoisite Ca2Al3Si3O12(OH). Science 171(3969):374–380

    Article  Google Scholar 

  • Grapes RH (1981) Chromian epidote and zoisite in kyanite amphibolite, Southern Alps. New Zealand Am Mineral 66(9–10):974–975

    Google Scholar 

  • Gupta YM, Shen XA (1991) Potential use of the ruby R2 line shift for static high-pressure calibration. Appl Phys Lett 58(6):583–585

    Article  Google Scholar 

  • Hazen RM, Au AY, Finger LW (1986) High-pressure crystal chemistry of beryl (Be3Al2Si6O18) and euclase (BeAlSiO4OH). Am Miner 71(7–8):977–984

    Google Scholar 

  • Hejny C, Konzett J, Pippinger T, Klotz T, Miletich R (2019) Pressure-enforced Cr substitution in Cr1+xAl1-xO(SiO4), synthetic analogues of kyanite. Phys Chem Miner 46:583–594

    Article  Google Scholar 

  • Hua H, Ueda J, Xu J, Back M, Tanabe S (2021) High-pressure photoluminescence properties of Cr3+-doped LaGaO3 perovskites modulated by pressure-induced phase transition. Inorg Chem 60(24):19253–19262

    Article  Google Scholar 

  • Hutton DR, Troup GJ (1964) Paramagnetic resonance of Cr3+ in kyanite. Br J Appl Phys 15(3):275–280

    Article  Google Scholar 

  • Imbusch GF, Schawlow AL, May AD, Sugano S (1965) Fluorescence of MgO: Cr3+ ions in noncubic sites. Phys Rev 140(3A):A830

    Article  Google Scholar 

  • Ito TI (1950) X-ray studies on polymorphism. Maruzen Company Limited, Tokyo

    Google Scholar 

  • Jahren AH, Kruger MB, Jeanloz R (1992) Alexandrite as a high-temperature pressure calibrant, and implications for the ruby pressure scale. J Appl Phys 71(4):1579–1582

    Article  Google Scholar 

  • Jenei Zs, Cynn H, Visbeck K, Evans WJ (2013) High-temperature experiments using a resistively heated high-pressure membrane diamond anvil cell. Rev Sci Instrum 84(9):095114

    Article  Google Scholar 

  • Jovanic BR (2000) Effect of high pressure on fluorescence lifetime and position for R1 line in synthetic spinel MgAl2O4: Cr3+. In: Materials science forum 352. Trans Tech Publications, Ltd., pp 247–250

    Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D-Appl Phys 42(7):075413

    Article  Google Scholar 

  • Kottke T, Williams F (1983) Pressure dependence of the alexandrite emission spectrum. Phys Rev B 28(4):1923–1927

    Article  Google Scholar 

  • Koziarska B, Godlewski M, Suchocki A, Czaja M, Mazurak Z (1994) Optical properties of zoisite. Phys Rev B 50(17):12297–12300

    Article  Google Scholar 

  • Langer K, Seifert F (1971) High pressure-high temperature-synthesis and properties of chromium kyanite, (Al, Cr)2SiO5. Z Anorg Allg Chem 383(1):29

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L (2009) Compressibility of a natural kyanite to 17.5 GPa. Prog Nat Sci 19(10):1281–1286

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res-Solid Earth Planets 91(B5):4673–4676

    Article  Google Scholar 

  • Mernagh TP, Liu LG (1991) Raman spectra from the Al2SiO5 polymorphs at high pressures and room temperature. Phys Chem Miner 18(2):126–130

    Article  Google Scholar 

  • Merrill L, Bassett WA (1974) Minature diamond anvil cell for single-crystal X-ray diffraction studies. Rev Sci Instrum 45(2):290–294

    Article  Google Scholar 

  • Mills SJ, Hatert F, Nickel EH, Ferraris G (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. Eur J Mineral 21(5):1073–1080

    Article  Google Scholar 

  • Monteil A, Duval E, Attar A, Viliani G, Lacroix R (1984) Splitting of the ruby fluorescence under stress. Journal De Physique Lettres 45(22):1097–1101

    Article  Google Scholar 

  • Nagashima M, Geiger CA, Akasaka M (2009) A crystal-chemical investigation of clinozoisite synthesized along the join Ca2Al3Si3O12(OH)-Ca2Al2CrSi3O12(OH). Am Miner 94:1351–1360

    Article  Google Scholar 

  • Naray-Szabo S, Taylor WH, Jackson WW (1929) The structure of kyanite. Zeitschrift Fur Kristallographie 71:117–130

    Google Scholar 

  • Nicholls LA, Ringwood AE (1973) Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in island-arc environment. J Geol 81(3):285–300

    Article  Google Scholar 

  • O’Bannon E III, Beavers CM, Kunz M, Williams Q (2018) High-pressure study of dravite tourmaline: insights into the accommodating nature of the tourmaline structure. Am Miner 103(10):1622–1633

    Article  Google Scholar 

  • O’Bannon E III, Williams Q (2016a) Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa. Phys Chem Miner 43(9):671–687

    Article  Google Scholar 

  • O’Bannon E III, Williams Q (2016b) A Cr3+ luminescence study of spodumene at high pressures: effects of site geometry a phase transition, and a level-crossing. Am Miner 101(5–6):1406–1413

    Article  Google Scholar 

  • O’Bannon E III, Williams Q (2017) Delocalization in Cr3+ luminescence of clinochlore: a pressure-induced transition from single-ion emission to pair emission. J Phys Chem Solids 109:89–99

    Article  Google Scholar 

  • O’Bannon EF III, Williams Q (2019) A Cr3+ luminescence study of natural topaz Al2SiO4(F, OH)2 up to 60 GPa. Am Miner 104(11):1656–1662

    Article  Google Scholar 

  • Ono S (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res-Solid Earth 103(B8):18253–18267

    Article  Google Scholar 

  • Ono S, Nakajima Y, Funakoshi K (2007) In situ observation of the decomposition of kyanite at high pressures and high temperatures. Am Miner 92(10):1624–1629

    Article  Google Scholar 

  • Parthasarathy G (1997) High-pressure behaviour of chromium ion as a fluorescing cation in earth materials. In: Yousuf M, Subramanian N, Rajan KG (eds) Advances in high pressure science and technology proceedings of the fourth national confernece on high pressure science and technology. Indira Gandhi Center for Atomic Research, Kalpakkam

    Google Scholar 

  • Peacock SM (1990) Fluid processes in subduction zones. Science 248(4953):329–337

    Article  Google Scholar 

  • Platonov AN, Tarashchan AN, Langer K, Andrut M, Partzsch G, Matsyuk SS (1998) Electronic absorption and luminescence spectroscopic studies of kyanite single crystals: differentiation between excitation of FeTi charge transfer and Cr3+ dd transitions. Phys Chem Miner 25(3):203–212

    Article  Google Scholar 

  • Poli S, Schmidt MW (1998) The high-pressure stability of zoisite and phase relationships of zoisite-bearing assemblages. Contrib Miner Petrol 130(2):162–175

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172(3983):567–570

    Article  Google Scholar 

  • Schmidt MW, Poli S (1994) The stability of lawsonite and zoisite at high-pressures: experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth Planet Sci Lett 124(1–4):105–118

    Article  Google Scholar 

  • Schmidt MW, Poli S, Comodi P, Zanazzi PF (1997) High-pressure behavior of kyanite: decomposition of kyanite into stishovite and corundum. Am Miner 82(5–6):460–466

    Article  Google Scholar 

  • Smith JV, Pluth JJ, Richardson JW, Kvick A (1987) Neutron diffraction study of zoisite at 15 K and X-ray study at room temperature. Zeitschrift Fur Kristallographie 179(1–4):305–321

    Article  Google Scholar 

  • Syassen K (2008) Ruby under pressure. High Press Res 28(2):75–126

    Article  Google Scholar 

  • Tanabe Y, Sugano S (1954) On the absorption spectra of complex ions I. J Phys Soc Jpn 9(5):753–766

    Article  Google Scholar 

  • Wamsley PR, Bray KL (1994) The effect of pressure on the luminescece of Cr3+: YAG. J Lumin 59(1–2):11–17

    Article  Google Scholar 

  • Weinstein BA (1986) Ruby thermometer for cryobaric diamond anvil cell. Rev Sci Instrum 57(5):910–913

    Article  Google Scholar 

  • Welch MD, Marshall WG (2001) High-pressure behavior of clinochlore. Am Miner 86(11–12):1380–1386

    Article  Google Scholar 

  • Wildner M, Beran A, Koller F (2013) Spectroscopic characterisation and crystal field calculations of varicoloured kyanites from Loliondo Tanzania. Mineral Petrol 107(2):289–310

    Article  Google Scholar 

  • Winkler B, Langer K, Johannsen PG (1989) The influence of pressure on the OH valence vibration of zoisite: an infrared spectroscopic study. Phys Chem Miner 16(7):668–671

    Article  Google Scholar 

  • Wojtowicz AJ (1991) Luminescence of Cr3+ in kyanite. J Lumin 50(4):221–230

    Article  Google Scholar 

  • Xu J, Zhang D, Fan D, Wu X, Shi F, Zhou W (2019) Compressional behavior of natural eclogitic zoisite by synchrotron X-ray single-crystal diffraction to 34 GPa. Phys Chem Miner 46(4):333–341

    Article  Google Scholar 

  • Yagi T, Inutsuka S, Kondo T (1998) Isothermal compression curve of Al2SiO5 kyanite. In: Manghnani MH, Yagi T (eds) Properties of Earth and Planetary Materials at High Pressure-Temperature. American Geophysical Union, Washington DC

    Google Scholar 

  • Yang HX, Downs RT, Finger LW, Hazen RM, Prewitt CT (1997) Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure. Am Miner 82(5–6):467–474

    Article  Google Scholar 

  • Yeung YY, Qin J, Chang YM, Rudowicz C (1994) Correlation of spectroscopic properties and subsitutional sites of Cr3+ in aluminosilicates: I Kyanite. Phys Chem Miner 21(8):526–531

    Article  Google Scholar 

  • Zhou Y, Irifune T, Kuribayashi T (2021) Phase relations of the Al2O3-SiO2 system at 13–21 GPa and 2300–2800 K and a new high-pressure Al2Si2O7 phase. Phys Chem Miner 48(7):1–14

    Article  Google Scholar 

  • Zhou Y, Irifune T, Ohfuji H, Kuribayashi T (2018) New high-pressure forms of Al2SiO5. Geophys Res Lett 45(16):8167–8172

    Article  Google Scholar 

Download references

Acknowledgements

E. OBannon thanks E. John for helpful discussions. We thank Rob Franks for help with LA-ICP-MS measurements, Dan Sampson for help with the Raman spectrometer, and two anonymous reviewers for helpful comments on the manuscript. A portion of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Work partially supported by NSF through EAR-1620423 and EAR-2017294, and COMPRES under NSF Cooperative Agreement EAR 11-57758.

Funding

Lawrence Livermore National Laboratory, DE-AC52-07NA27344, National Science Foundation, EAR-1620423.

Author information

Authors and Affiliations

Authors

Contributions

EFO prepared and carried out the experiments. EFO carried out the data analysis with input from QW. EFO and QW wrote the manuscript.

Corresponding author

Correspondence to Earl F. O’Bannon III.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Bannon, E.F., Williams, Q. High-pressure Cr3+ R-line luminescence of zoisite and kyanite: a probe of octahedral site distortion. Phys Chem Minerals 49, 35 (2022). https://doi.org/10.1007/s00269-022-01211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-022-01211-8

Keywords

Navigation