Skip to main content
Log in

Experimental measurements of non-Newtonian fluid flow through a stenotic tube

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This paper presents an experimental study of the laminar flow of a non-Newtonian fluid through 75% (by area reduction) stenotic tubes. The fluid behaviour was described by the Herschel Bulkey non-Newtonian model. The non-Newtonian fluids were aqueous solutions of 0.1% Carbopol 940. Upstream flow conditions were steady and spanned a range of generalized Reynolds numbers Reg from 0.20 to 13.66. The velocity profiles were measured with a Laser Doppler Anemometry (LDA). This study allows us to see locally the influence of the geometry and the non-Newtonian character of the fluid on the velocity profiles, the pressure drops and flow resistance. From the experimental data, the frictional resistance decreases with increasing generalized Reynolds number Reg and resistance gave a weak value in a stenotic tube as compared to the flow in a simple tube. At the level of stenosis, a correlation relating of the Euler number to the generalized Reynolds number is developed. To compare the upstream and downstream parts of the stenosis, it is preferable to represent the pressure drops by the friction factor f. This factor f in upstream and downstream decreases linearly with the generalized Reynolds number Reg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

D :

Tube diameter, m

Eu :

Euler number; \(\left(\frac{\Delta \mathbf{P}}{{\varvec{\uprho}}{\mathbf{U}}_{\mathbf{m}}^{2}}\right)\)

\(f\) :

Friction factor; \(\left(\frac{2{{\varvec{\tau}}}_{{\varvec{p}}}}{{\varvec{\rho}}{{\varvec{U}}}_{{\varvec{m}}}^{2}}\right)\)

k :

Constant in the Herschel–Bulkley model, Pa.sn

L :

Distance between two pressure taps, m

L 0 :

Length of the stenosis, m

n :

Flow behaviour index

p :

Pressure, Pa

\(\Delta \mathrm{P}\) :

Pressure drop difference, Pa

r :

Radial location within tube, m

R:

Tube radius, m

Reg:

Generalized Reynolds number; \(\left(\frac{{\varvec{\rho}}{{\varvec{U}}}_{{\varvec{m}}}^{2-{\varvec{n}}}{R}^{n}}{k}\right)\)

U m :

Average velocity, m/s

U z :

Axial velocity, m/s

U r :

Radial velocity, m/s

Q V :

Flow rate, m3/s

S :

Stenosis severity;\(\left(s=(1-{\delta }^{2}/{D}^{2})*100\%\right)\)

\(\gamma\) :

Shear rate (s−1)

\(\delta\) :

Contraction of stenosis, m

\(\rho\) :

Fluid density, kg/m3

\(\lambda\) :

Resistance, N.s.m5; \(\left(\frac{\Delta \mathrm{P}}{\mathrm{Qv}}\right)\)

\({\lambda }_{simple}\) :

Resistance in simple tube, N.s.m5

\({\lambda }_{stenosis}\) :

Resistance in stenotic tube, N.s.m5

\(\tau\) :

Shear stress, Pa

\({\tau }_{ad}\) :

Shear stress adjusted, Pa

\({\tau }_{m}\) :

Shear stress measured, Pa

\({\tau }_{w}\) :

Wall shear stress, Pa\(\left(\frac{\Delta \mathrm{P D}}{4\mathrm{ L}}\right)\)

References

  1. Young DF (1979) Fluid mechanics of arterial stenoses. J Biomech Eng 101(3):157–175. https://doi.org/10.1115/1.3426241

    Article  Google Scholar 

  2. Berger SA, Jou L (2000) Flows in stenotic vessels. Annu Rev. Fluid Mech 32:347–382. https://doi.org/10.1146/annurev.fluid.32.1.347

    Article  Google Scholar 

  3. Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36:197–231. https://doi.org/10.1146/annurev.fluid.36.050802.121944

    Article  Google Scholar 

  4. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434. https://doi.org/10.1146/annurev.fluid.29.1.399

    Article  Google Scholar 

  5. Ahmed SA, Giddens DP (1983) Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J Biomech 16(12):955–963. https://doi.org/10.1016/0021-9290(83)90096-9

    Article  CAS  Google Scholar 

  6. Taludker N, Karayannacos PE, Nerem RM, Vasko JS (1977) An experimental study of the fluid dynamics of multiple noncritical stenoses. J Biomech Eng 99(2):74–82. https://doi.org/10.1115/1.3426276

    Article  Google Scholar 

  7. Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29(5):435–450. https://doi.org/10.1055/s-2003-44551

    Article  CAS  Google Scholar 

  8. Cristini V et al (2005) Computer modeling of red blood cell rheology in the microcirculation: a brief overview. Ann Biomed Eng 33(12):1724–1727. https://doi.org/10.1007/s10439-005-8776-y

    Article  Google Scholar 

  9. Forrester DFYJH (1970) Flow through a converging-diverging tube and its implications in occlusive vascular disease-1. J Biomechanics 3:297–305

    Article  CAS  Google Scholar 

  10. Hershey D, Cho SJ (1966) Blood flow in rigid tubes: thickness and slip velocity of plasma film at the wall. J Appl Physiol 21(1):27–32. https://doi.org/10.1152/jappl.1966.21.1.27

    Article  CAS  Google Scholar 

  11. Iida N (1978) Influence of plasma layer on steady blood flow in microvessels. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 17(1):203–214. https://doi.org/10.1143/JJAP.17.203

    Article  Google Scholar 

  12. Nakamura M, Sawada T (1988) Numerical study on the flow of a non-newtonian fluid through an axisymmetric stenosis. J Biomech Eng 110(2):137–143. https://doi.org/10.1115/1.3108418

    Article  CAS  Google Scholar 

  13. Chen J, Lu XY, Wang W (2006) Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J Biomech 39(11):1983–1995. https://doi.org/10.1016/j.jbiomech.2005.06.012

    Article  Google Scholar 

  14. Chaturani RP, Samy P (1986) A study of non-Newtonian aspects of blood flow through stenosed arteries and its application in arterial diseases. Biorheology 22:521–531

    Article  Google Scholar 

  15. Shukla BRPRJB, Parihar DRS (1980) Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Biol 42:283–294

    Article  CAS  Google Scholar 

  16. Ashraf F, Park CW (2022) Fluid–structure interaction analysis of non-Newtonian Herschel-Bulkley fluid viscosity model for pulsating flow of blood in ω-shaped stenosed arteries. Korea-Aust Rheol J 34(1):51–67. https://doi.org/10.1007/s13367-022-00025-y

    Article  Google Scholar 

  17. Tu C, Deville M (1996) Pulsatile flow of non-Newtonian fluids through arterial stenoses. J Biomech 29(7):899–908. https://doi.org/10.1016/0021-9290(95)00151-4

    Article  CAS  Google Scholar 

  18. Maruthi Prasad K, Radhakrishnamacharya G (2008) Flow of Herschel-Bulkley fluid through an inclined tube of non-uniform cross-section with multiple stenosis. Arch Mech 60(2):161–172. https://doi.org/10.24423/aom.262

    Article  Google Scholar 

  19. Khader SMA, Shenoy BS, Pai R, Kamath SG, Sharif NM, Rao VRK (2011) Effect of increased severity in patient specific stenosis of common carotid artery using CFD-a case study. World J Model Simul 7(2):113–122

    Google Scholar 

  20. Sui B, Gao P, Lin Y, Jing L, Sun S, Qin H (2015) Hemodynamic parameters distribution of upstream, stenosis center, and downstream sides of plaques in carotid artery with different stenosis: a MRI and CFD study. Acta radiol 56(3):347–354. https://doi.org/10.1177/0284185114526713

    Article  Google Scholar 

  21. Sharma MK, Nasha V, Sharma PR (2016) A study for analyzing the effect of overlapping stenosis and dilatation on non-Newtonian blood flow in an inclined artery. J Biomed Sci Eng 09(12):576–596. https://doi.org/10.4236/jbise.2016.912050

    Article  Google Scholar 

  22. Zhou Y, Lee C, Wang J (2018) The computational fluid dynamics analyses on hemodynamic characteristics in stenosed arterial models. J Healthc Eng. https://doi.org/10.1155/2018/4312415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imane Trea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Statistical study

Appendix A: Statistical study

(1) Pearson coefficient

$$R=\frac{N\sum_{i=1}^{N}{\tau }_{m}{\tau }_{ad}-\sum_{i=1}^{N}{\tau }_{m}\sum_{i=1}^{N}{\tau }_{ad}}{\sqrt{\left(N\sum_{i=1}^{N}{{\tau }_{m}}^{2}-{\left(\sum_{i=1}^{N}{\tau }_{m}\right)}^{2}\right)\left(N\sum_{i=1}^{N}{{\tau }_{ad}}^{2}-{\left(\sum_{i=1}^{N}{\tau }_{ad}\right)}^{2}\right)}}$$

\({R}_{Bingham}=\) 0.939, \({R}_{\mathrm{Herschel}-\mathrm{bulkley}}=0.999\), \({R}_{Casson}=0.952\)

A correlation coefficient of 1 means that two variables are perfectly positively linearly related.

(2) Thiel coefficient

$$Te=\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N}{\left({\tau }_{m}-{\tau }_{ad}\right)}^{2}}}{\sqrt{\frac{1}{N}\sum_{i=1}^{N}{{\tau }_{ad}}^{2}}+\sqrt{\frac{1}{N}\sum_{i=1}^{N}{{\tau }_{m}}^{2}}}$$

\({Te}_{Bingham}=\) 0.159, \({Te}_{\mathrm{Herschel}-\mathrm{bulkley}}=0.018\), \({Te}_{Casson}=0.25\)

With 0 ≤ Te ≤ 1.

If Te reaches 0, the model is favorable, else if go to 1, the model is not appropriate.

(3) Calculation of dispersion

$$D\left(\%\right)=\sqrt{\frac{1}{N}\sum_{i=1}^{N}{\left(\frac{{\tau }_{ad}-{\tau }_{m}}{{\tau }_{m}}\right)}^{2}}.100$$

\({D}_{Bingham}=\) 12.85,\({D}_{\mathrm{Herschel}-\mathrm{bulkley}}=1.55\), \({D}_{Casson}=8.08\)

If the dispersion tends to zero, the model is more adjusted with the experimental values.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trea, I., Mahfoud, M. & Haddad, F. Experimental measurements of non-Newtonian fluid flow through a stenotic tube. Korea-Aust. Rheol. J. 34, 317–326 (2022). https://doi.org/10.1007/s13367-022-00038-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00038-7

Keywords

Navigation