Skip to main content
Log in

How to resolve the trade-off between performance and long-term stability of magnetorheological fluids

  • Review Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

A suspension of micro- or nano-magnetic particles dispersed in a nonmagnetic carrier medium is called a magnetorheological (MR) fluid. MR fluids are smart materials that undergo rapid and reversible changes in rheological properties under an external magnetic field. The rheological properties of MR fluids can be easily controlled through manipulation of the magnetic field strength. Because of their unique and fast reversible changes in rheological properties, MR fluids are widely used in various devices and structures. However, they suffer long-term stability (particle sedimentation) problems because of the density mismatch between the suspended magnetic particle and the liquid medium. In previous studies, researchers have expended great efforts to simultaneously improve the stability and performance of MR fluids. Nevertheless, a trade-off relationship exists between the stability and the performance of MR fluids, that is, as MR performance increases, stability decreases, and vice versa. In this review, we recapitulate the findings of our group's recent achievements and address the conflicting issues. Reviewing the various routes will provide clues to solving the trade-off problem and suggest a guideline for developing high-performance and highly stable MR fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Copyright: American Chemical Society, 2012)

Fig. 2
Fig. 3

(Copyright: American Chemical Society, 2011)

Fig. 4

(Copyright: Elsevier, 2017)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

(Copyright: American Chemical Society, 2019)

Fig. 14

(Copyright: American Chemical Society, 2020)

Fig. 15

(Copyright: American Chemical Society 2020)

Fig. 16

(Copyright: American Chemical Society, 2020)

Fig. 17

(Copyright: American Chemical Society, 2020)

Fig. 18

(Copyright: Elsevier 2021)

Fig. 19

(Copyright: Elsevier 2021)

Fig. 20

(Copyright: Elsevier 2021)

Fig. 21
Fig. 22
Fig. 23

(Copyright: Materials Research Society, 2019)

Fig.24

(Copyright: Springer, 2022)

Fig. 25

(Copyright: Springer, 2022)

Fig. 26

(Copyright: Springer, 2022)

Fig. 27

(Copyright: Springer, 2022)

Fig. 28

(Copyright: Springer, 2022)

Fig. 29
Fig. 30

(Copyright: American Chemical Society, 2021)

Fig. 31

(Copyright: American Chemical Society, 2021)

Fig. 32

(Copyright: American Chemical Society, 2021)

Fig. 33

(Copyright: American Chemical Society, 2021)

Fig. 34

(Copyright: American Chemical Society, 2021)

Fig. 35

(Copyright: American Chemical Society, 2021)

Fig. 36

(Copyright: American Chemical Society, 2021)

Fig. 37

(Copyright: American Chemical Society, 2021)

Fig. 38

(Copyright: American Chemical Society, 2021)

Fig. 39

(Copyright: American Chemical Society, 2021)

Fig. 40
Fig. 41

Similar content being viewed by others

References

  1. Bell R, Zimmerman D, Wereley N (2013) Magnetorheology: advances and Applications. In: Wereley N (ed) RSC smart materials. Royal Society of Chemistry, Cambridge, pp 31–55 (Chapter 2)

    Google Scholar 

  2. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701–3710. https://doi.org/10.1039/C0SM01221A

    Article  Google Scholar 

  3. Ahamed R, Choi SB, Ferdaus M (2018) A state of art on magneto-rheological materials and their potential applications. J Intell Mater Syst Struct 29(10):2051–2095. https://doi.org/10.1177/1045389X18754350

    Article  Google Scholar 

  4. Ashtiani M, Hashemabadi S, Ghaffari A (2015) A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater 374:716–730. https://doi.org/10.1016/j.jmmm.2014.09.020

    Article  CAS  Google Scholar 

  5. Cvek M, Mrlík M, Ilčíkova M, Mosnáček J, Münster L, Pavlínek V (2017) Synthesis of silicone elastomers containing silyl-based polymer- grafted carbonyl iron particles: an efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules 50(5):2189–2200. https://doi.org/10.1021/acs.macromol.6b02041

    Article  CAS  Google Scholar 

  6. Hajalilou A, Amri Mazlan S, Lavvafi H, Shameli K (2016) Magnetorheological fluid applications. In: Field responsive fluids as smart materials. Engineering materials. Springer, Singapore. p 67–81. https://doi.org/10.1007/978-981-10-2495-5_5.

  7. Thiagarajan S, Koh AS (2021) Performance and stability of magnetorheological fluids—a detailed review of the state of the art. Adv Eng Mater 23:2001458. https://doi.org/10.1002/adem.202001458

    Article  CAS  Google Scholar 

  8. Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y (2018) Searching for a stable high-performance magnetorheological suspension. Adv Mater 30:1704769. https://doi.org/10.1002/adma.201704769

    Article  CAS  Google Scholar 

  9. Yang TH, Koo JH, Kim SY, Kyung KU, Kwon DS (2012) Application of magnetorheological fluids for a miniature haptic button: experimental evaluation. J Intell Mater Syst Struct 23(9):1025–1031. https://doi.org/10.1063/1.4978339

    Article  CAS  Google Scholar 

  10. Shah K, Phu DX, Seong MS, Upadhyay R, Choi SB (2014) A low sedimentation magnetorheological fluid based on plate-like iron particles, and verification using a damper test. Smart Mater Struct 23(2):027001. https://doi.org/10.1088/0964-1726/23/2/027001

    Article  CAS  Google Scholar 

  11. Zapoměl J, Ferfecki P, Kozánek J (2017) Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors. Int J Mech Sci 127(7):191–197. https://doi.org/10.1016/j.ijmecsci.2016.11.009

    Article  Google Scholar 

  12. Irannejad M, Ohadi A (2017) Vibration analysis of a rotor supported on magneto-rheological squeeze film damper with short bearing approximation: a contrast between short and long bearing approximations. J Vib Control 23(11):1792–1808. https://doi.org/10.1177/1077546315601298

    Article  Google Scholar 

  13. Bucchi F, Forte P, Frendo F (2015) Temperature effect on the torque characteristic of a magnetorheological clutch. Mech Adv Mater Struct 22:150–158. https://doi.org/10.1080/15376494.2014.910581

    Article  Google Scholar 

  14. Deng L, Sun S, Christie MD, Yang J, Ning D, Zhu XJ, Du HP, Zahng SW, Li WH (2019) Experimental testing and modelling of a rotary variable stiffness and damping shock absorber using magnetorheological technology. J Intell Mater Syst Struct 30:1453–1465. https://doi.org/10.1177/1045389X19835955

    Article  Google Scholar 

  15. Li DD, Keogh DF, Huang K, Chan QN, Yuen ACY, Menictas C, Timchenko V, Yeoh GH, Yuan X, Tian T, Ling H, Qiu T (2019) Modeling the response of magnetorheological fluid dampers under seismic conditions. Int J Acoust Vib 24:784–791. https://doi.org/10.3390/app9194189

    Article  CAS  Google Scholar 

  16. Cesmeci S, Gordaninejad F, Ryan KL, Eltahawy W (2019) Design of a fail-safe magnetorheological-based system for three-dimensional earthquake isolation of structures. Mechatronics 64:102296. https://doi.org/10.1016/j.mechatronics.2019.102296

    Article  Google Scholar 

  17. Bitaraf M, Ozbulut OE, Hurlebaus S, Barroso L (2010) Application of semi-active control strategies for seismic protection of buildings with MR dampers. Eng Struct 32(10):3040–3047. https://doi.org/10.1016/j.engstruct.2010.05.023

    Article  Google Scholar 

  18. Chen Z, Wang X, Ko J, Ni Y, Spencer Jr BF, Yang G (2003) MR damping system on Dongting Lake cable-stayed bridge, Smart structures and materials: smart systems and nondestructive evaluation for civil infrastructures. In: Event: smart structures and materials, 2003, San Diego, California, United States. International society for optics and photonics, proceedings, vol 5057, p 229–235. https://doi.org/10.1117/12.498072

  19. Palzer J, Mues B, Goerg R, Aberle M, Rensen SS, Olde Damink SWM, Vaes RDW, Cramer T, Schmitz-Rode T, Neumann UP, Slabu I, Roeth AA (2021) Magnetic fluid hyperthermia as treatment option for pancreatic cancer cells and pancreatic cancer organoids. Int J Nanomed 16:2965–2981. https://doi.org/10.2147/IJN.S288379

    Article  Google Scholar 

  20. Lanier OL, Korotych OI, Monsalve AG, Wable D, Savliwala S, Grooms NWF, Nacea C, Tuitt OR, Dobson J (2019) Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int J Hyperth 36(1):686–700. https://doi.org/10.1080/02656736.2019.1628313

    Article  CAS  Google Scholar 

  21. Richardson JJ, Caruso F (2020) Nanomedicine toward 2040. Nano Lett 20:1481–1482. https://doi.org/10.1021/acs.nanolett.0c00620

    Article  CAS  Google Scholar 

  22. Rubia-Rodríguez I et al (2021) Whither magnetic hyperthermia? A tentative roadmap. Materials 14:706. https://doi.org/10.3390/ma14040706

    Article  CAS  Google Scholar 

  23. Chuah WH, Zhang WL, Choi HJ, Seo Y (2015) Magnetorheology of core-shell structured carbonyl iron/ polystyrene foam nanoparticles suspension with enhanced stability. Macromolecules 48(19):7311–7319. https://doi.org/10.1021/acs.macromol.5b01430

    Article  CAS  Google Scholar 

  24. Ronzova A, Sedlacik M, Cveka M (2021) Magnetorheological fluids based on core–shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance. Soft Matter 17:1299–1306. https://doi.org/10.1039/D0SM01785J

    Article  CAS  Google Scholar 

  25. Guo Y, Sun C, Xu Z, Jing X (2018) Preparation and tests of MR fluids with CI particles coated with MWNTs. Front Mater 5:50. https://doi.org/10.3389/fmats.2018.00050

    Article  Google Scholar 

  26. Lee JY, Kwon SH, Choi HJ (2019) Magnetorheological characteristics of carbonyl iron microparticles with different shapes. Korea Aust Rheol J 31:41–47. https://doi.org/10.1007/s13367-019-0005-6

    Article  Google Scholar 

  27. Cvek M, Mrlik M, Ilcikova M, Plachy T, Sedlacik M, Mosnacek J, Pavlinek V (2015) A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): a tool for adjusting MR response and stability properties. J Mater Chem C 3(18):4646–4656. https://doi.org/10.1039/C5TC00319A

    Article  CAS  Google Scholar 

  28. Han S, Choi J, Seo YP, Park IJ, Choi HJ, Seo Y (2018) High-performance magnetorheological suspensions of Pickering-emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 34(8):2807–2814. https://doi.org/10.1021/acs.langmuir.7b04043

    Article  CAS  Google Scholar 

  29. Choi J, Han S, Kim H, Sohn E, Choi HJ, Seo Y (2019) Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl Nano Mater 2(11):6939–6947. https://doi.org/10.1021/acsanm.9b01420

    Article  CAS  Google Scholar 

  30. Cho S, Kim H, Kim S, Seo Y (2022) Effects of non-magnetic carbon nanotubes on the performance and stability of magnetorheological fluids containing FeCo-deposited carbon nanotubes. Korea Aust Rheol J. https://doi.org/10.1007/s13367-022-00023-0

    Article  Google Scholar 

  31. Han S, Choi J, Han HN, Kim S, Seo Y (2021) Effect of particle shape anisotropy on the performance and stability of magnetorheological fluids. ACS Appl Electron Mater 3:2526–2533. https://doi.org/10.1021/acsaelm.1c00070

    Article  CAS  Google Scholar 

  32. Choi J, Nam KT, Kim S, Seo Y (2021) Synergistic effects of nonmagnetic carbon nanotubes on the performance and stability of magnetorheological fluids containing carbon nanotube-Co0.4Fe0.4Ni0.2 nanocomposite particles. Nano Lett 21(12):4973–4980. https://doi.org/10.1021/acs.nanolett.1c00674

    Article  CAS  Google Scholar 

  33. Choi J, Han S, Kim J, Seo Y (2021) Strong and stable magnetorheological fluids based on flaky sendust-Co0.4Fe0.4Ni0.2 nanocomposite particles. ACS Appl Mater Interfaces 13:26581–26589. https://doi.org/10.1021/acsami.1c03790

    Article  CAS  Google Scholar 

  34. Han S, Choi J, Kim J, Han HN, Choi HJ, Seo Y (2021) Porous Fe3O4 submicron particles for use in magnetorheological fluids. Colloids Surf A Physicochem Eng Aspect 613:126066. https://doi.org/10.1016/j.colsurfa.2020.126066

    Article  CAS  Google Scholar 

  35. Choi J, Han S, Nam KT, Seo Y (2020) Hierarchically structured Fe3O4 nanoparticles for high-performance magnetorheological fluids with long-term stability. ACS Appl Nano Mater 3:10931–10940. https://doi.org/10.1021/acsanm.0c02187

    Article  CAS  Google Scholar 

  36. Seo Y, Choi HJ (2020) Core-shell structured Fe3O4 nanocomposite particles for high-performance/ stable magnetorheological fluids: preparation and characteristics. J Korean Ceram Soc 57:608–631. https://doi.org/10.1007/s43207-020-00070-9

    Article  CAS  Google Scholar 

  37. Han W, Piao S, Choi H, Seo Y (2017) Core–shell structured mesoporous magnetic nanoparticles and their magnetorheological response. Colliod Surf A 524(5):79–86. https://doi.org/10.1016/j.colsurfa.2017.04.016

    Article  CAS  Google Scholar 

  38. Seo YP, Kwak S, Choi HJ, Seo Y (2016) Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe2O3/polystyrene composite particles. J Colloid Interface Sci 463(1):272–278. https://doi.org/10.1016/j.jcis.2015.11.002

    Article  CAS  Google Scholar 

  39. Kim YH, Ahn WJ, Choi HJ, Seo Y (2016) Fabrication and magnetic stimuli-response of polydopamine-coated core–shell structured carbonyl iron microspheres. Colloid Polym Sci 294:329–337. https://doi.org/10.1007/s00396-015-3786-2

    Article  CAS  Google Scholar 

  40. Quan X, Chuah W, Seo Y, Choi HJ (2014) Core-shell structured polystyrene coated carbonyl iron microspheres and their magnetorheology. IEEE Trans Magn 50(1):1–4. https://doi.org/10.1109/TMAG.2013.2278291

    Article  CAS  Google Scholar 

  41. Choi HJ, Zhang WL, Kim S, Seo Y (2014) Core-shell structured electro-and magneto-responsive materials: fabrication and characteristics. Materials 7(11):7460–7471. https://doi.org/10.3390/ma7117460

    Article  Google Scholar 

  42. Kim YJ, Liu YD, Seo Y, Choi HJ (2013) Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their magnetoresponsive characteristics. Langmuir 29(16):4959–4965. https://doi.org/10.1021/la400523w

    Article  CAS  Google Scholar 

  43. Fang FF, Liu YD, Choi HJ, Seo Y (2011) Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS Appl Mater Interfaces 3(9):3487–3495. https://doi.org/10.1021/am200714p

    Article  CAS  Google Scholar 

  44. Han WJ, Choi HJ, Seo Y (2020) Pickering emulsion fabricated smart polyaniline/clay composite particles and their tunable rheological response under electric field. Smart Mater Struct 29:085022. https://doi.org/10.1088/1361-665X/ab9548

    Article  CAS  Google Scholar 

  45. Seo YP, Han S, Kim J, Choi HJ, Seo Y (2020) Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles. Rheol Acta 59:415–423. https://doi.org/10.1007/s00397-020-01205-9

    Article  CAS  Google Scholar 

  46. Dong YZ, Seo Y, Choi HJ (2019) Recent development of electro-responsive smart electrorheological fluids. Soft Matter 15:3473–3486. https://doi.org/10.1039/C9SM00210C

    Article  CAS  Google Scholar 

  47. Jun C, Kwon SH, Choi HJ, Seo Y (2017) Polymeric nanoparticle-coated Pickering emulsion-synthesized conducting polyaniline hybrid particles and their electrorheological study. ACS Appl Mater Interfaces 9(51):44811–44819. https://doi.org/10.1021/acsami.7b13808

    Article  CAS  Google Scholar 

  48. Kim MH, Bae DH, Choi HJ, Seo Y (2017) Synthesis of semiconducting poly(diphenylamine) particles and analysis of their electrorheological properties. Polymer 119:40–49. https://doi.org/10.1016/j.polymer.2017.05.017

    Article  CAS  Google Scholar 

  49. Seo YP, Choi HJ, Seo Y (2017) Analysis of the static yield stress for giant electrorheological fluids. Korea Aust Rheol J 29:215–218. https://doi.org/10.1007/s13367-017-0022-2

    Article  Google Scholar 

  50. Kim MW, Moon IJ, Choi HJ, Seo Y (2016) Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. RSC Adv 6:56495–56502. https://doi.org/10.1039/C6RA10349A

    Article  CAS  Google Scholar 

  51. Seo YP, Choi HJ, Seo Y (2015) Yield stress analysis of electrorheological suspensions containing core–shell structured anisotropic poly(methyl methacrylate) microparticles. Polym Adv Technol 26(1):117–120. https://doi.org/10.1002/pat.3430

    Article  CAS  Google Scholar 

  52. Seo YP, Seo Y (2022) Modeling of electrorheological fluids. In: Encyclopedia of smart materials. Elsevier, New York, p 140–151. https://doi.org/10.1016/B978-0-12-803581-8.12057-0

  53. Seo YP, Chua WH, Seo Y (2015) Modeling and analysis of electrorheological suspensions in shear flow. AIP Conf Proc 1664:170003. https://doi.org/10.1063/1.4918521

    Article  Google Scholar 

  54. Seo YP, Choi HJ, Seo Y (2014) Modelling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. Colloids Surf A Physicochem Eng Asp 457:363–367. https://doi.org/10.1016/j.colsurfa.2014.06.011

    Article  CAS  Google Scholar 

  55. Kim SD, Zhang WL, Choi HJ, Seo YP, Seo Y (2014) Electrorheological activity generation by graphene oxide coating on low-dielectric silica particles. RSC Adv 4:62644–62650. https://doi.org/10.1039/C4RA13357A

    Article  CAS  Google Scholar 

  56. Seo YP, Seo Y (2013) Analysis of giant electrorheological fluids. J Colloid Interface Sci 402:90–93. https://doi.org/10.1016/j.jcis.2013.03.046

    Article  CAS  Google Scholar 

  57. Zhang WL, Choi HJ, Seo Y (2013) Facile fabrication of chemically grafted graphene dxide–poly(glycidyl methacrylate) composite microspheres and their electrorheology. Macro Chem Phys 214(13):1415–1422. https://doi.org/10.1002/macp.201300054

    Article  CAS  Google Scholar 

  58. Zhang WL, Liu WD, Choi HJ, Seo Y (2013) Core–shell structured graphene oxide-adsorbed anisotropic poly(methyl methacrylate) microparticles and their electrorheology. RSC Adv 3:11723–11731. https://doi.org/10.1039/C3RA22411B

    Article  CAS  Google Scholar 

  59. Seo YP, Choi HJ, Seo Y (2012) A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. Soft Matter 8(17):4659–4663. https://doi.org/10.1039/C2SM07275K

    Article  Google Scholar 

  60. Seo YP, Seo Y (2012) A simple constitutive model describing the steady state shear viscosity and its prediction of the first normal stress function in shear flow. Polymer 53(5):1058–1062. https://doi.org/10.1016/j.polymer.2012.01.012

    Article  CAS  Google Scholar 

  61. Seo YP, Seo Y (2012) Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 28(6):3077–3084. https://doi.org/10.1021/la204515q

    Article  CAS  Google Scholar 

  62. Seo YP, Choi HJ, Seo Y (2012) Modeling and analysis of the electrorheological fluids (suspension flow) with aligned-structure reformation. Adv Sci Technol 77(1):103–107. https://doi.org/10.4028/www.scientific.net/AST.77.47

    Article  CAS  Google Scholar 

  63. Seo YP, Choi HJ, Seo Y (2011) Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. Polymer 52(25):5695–5698. https://doi.org/10.1016/j.polymer.2011.10.033

    Article  CAS  Google Scholar 

  64. Kim YH, Park BJ, Choi HJ, Seo Y (2007) Coating of magnetic particle with polystyrene and its magnetorheological characterization. Phys Stat Solidi A 204(12):4178–4181. https://doi.org/10.1002/pssa.200777353

    Article  CAS  Google Scholar 

  65. Liu YD, Fang FF, Choi HJ, Seo Y (2011) Fabrication of semiconducting polyaniline/ nano-silica nanocomposite particles and their enhanced electrorheological and dielectric characteristics. Colloid Surf A Physicochem Eng Asp 381(1–3):17–22. https://doi.org/10.1016/j.colsurfa.2011.02.051

    Article  CAS  Google Scholar 

  66. Seo Y (2011) A new yield stress scaling function for electrorheological fluids. J Non-Newtonian Fluid Mech 166:241–243. https://doi.org/10.1016/j.jnnfm.2010.11.010

    Article  CAS  Google Scholar 

  67. Fang FF, Choi HJ, Seo Y (2010) Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl Mater Interfaces 2(1):54–60. https://doi.org/10.1021/am900577w

    Article  CAS  Google Scholar 

  68. Fang FF, Choi HJ, Seo Y (2010) Novel fabrication of polyaniline particles wrapped by exfoliated clay sheets and their electrorheology. J Nanosci Nanotechnol 10(1):285–289. https://doi.org/10.1166/jnn.2010.1491

    Article  CAS  Google Scholar 

  69. Parmar KPS, Meheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24(5):1814–1822. https://doi.org/10.1021/la702989u

    Article  CAS  Google Scholar 

  70. McIntyre C, Hengxi Y, Green FP (2013) Electrorheology of suspensions containing interfacially active constituents. ACS Appl Mater Interfaces 5(18):8925–8931. https://doi.org/10.1021/am4017544

    Article  CAS  Google Scholar 

  71. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385–404. https://doi.org/10.1122/1.549926

    Article  CAS  Google Scholar 

  72. Mills P, Snabre P (1994) Settling of a suspension of hard spheres. Europhys Lett 25(9):651–656. https://doi.org/10.1209/0295-5075/25/9/003

    Article  Google Scholar 

  73. Sedlačík M, Pavlínek V, Sáha P, Švrčinová P, Filip P, Stejskal J (2010) Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles. Smart Mater Struct 19:115008. https://doi.org/10.1088/0964-1726/19/11/115008

    Article  CAS  Google Scholar 

  74. Davis L C, Ginder J M (1995) Progress in electrorheology. In: Mavel KO, Filisko FE, (eds) Plenum, New York, p 107

  75. Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS (2001) A yield stress scaling function for electrorheological fluids. Appl Phys Lett 78:3806. https://doi.org/10.1063/1.1379058

    Article  CAS  Google Scholar 

  76. Zhou J, Qiao X, Binks BP, Sun K, Bai M, Li Y, Liu Y (2011) Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. Langmuir 27:3308–3316. https://doi.org/10.1021/la1036844

    Article  CAS  Google Scholar 

  77. Morillas JR, de Vicente J (2020) Magnetorheology: a review. Soft Matter 16:9614–9642. https://doi.org/10.1039/D0SM01082K

    Article  CAS  Google Scholar 

  78. Pu HT, Jiang FJ, Yang ZL (2006) Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite. Mater Chem Phys 100(1):10–14. https://doi.org/10.1016/j.matchemphys.2005.11.032

    Article  CAS  Google Scholar 

  79. Bai F, Yang XL, Huang WQ (2004) Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillationprecipitation polymerization. Macromolecules 37(26):9746–9752. https://doi.org/10.1021/ma048566l

    Article  CAS  Google Scholar 

  80. Li GL, Yang XY, Wang B, Wang JY, Yang XL (2008) Monodisperse temperature-responsive hollow polymer microspheres: synthesis, characterization and biological application. Polymer 49(16):3436–3443. https://doi.org/10.1021/jp073566j

    Article  CAS  Google Scholar 

  81. Kim J, Lee H, Kim DY, Seo Y (2014) Resonant multiple light scattering for enhanced photon harvesting in dye-sensitized solar cells. Adv Mater 26(30):5192–5197. https://doi.org/10.1002/adma.201400124

    Article  CAS  Google Scholar 

  82. Lee H, Hwang D, Jo SM, Kim D, Seo Y, Kim DY (2012) Low-temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process. ACS Appl Mater Interfaces 4(6):3308–3315. https://doi.org/10.1021/am3007164

    Article  CAS  Google Scholar 

  83. Li C, He K, Sun W, Wang B, Yu S, Hao C, Chen K (2020) Synthesis of hollow TiO2 nanobox with enhanced electrorheological activity. Ceram Int 46(10 Part A):14573–14582. https://doi.org/10.1016/j.ceramint.2020.02.257

    Article  CAS  Google Scholar 

  84. Hwang D, Lee H, Jang SY, Jo SM, Kim D, Seo Y, Kim DY (2011) Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 3(7):2719–2725. https://doi.org/10.1021/am200517v

    Article  CAS  Google Scholar 

  85. Račuciu M, Creangǎ D, Airinei A (2006) Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J E Soft Matter Biol Phys 21(2):117–121. https://doi.org/10.1140/epje/i2006-10051-y

    Article  CAS  Google Scholar 

  86. Kim H, Kim S, Seo Y (2019) High-performance magnetorheological suspensions of Fe3O4-deposited carbon nanotubes with enhanced stability. MRS Adv 4(3/4):217–224. https://doi.org/10.1557/adv.2019.109

    Article  CAS  Google Scholar 

  87. Huiqun C, Meifang Z, Yaogang LJ (2006) Novel carbon nanotube iron oxide magnetic nanocomposites. J Magn Magn Mater 305:321–324. https://doi.org/10.1016/j.jmmm.2006.01.021

    Article  CAS  Google Scholar 

  88. Pu HT, Jiang FJ (2005) Towards High sedimentation stability: magnetorheological fluids based on CNT/Fe3O4nanocomposites. Nanotechnology 16(9):1486–1489. https://doi.org/10.1088/0957-4484/16/9/012

    Article  CAS  Google Scholar 

  89. Jing Y, He S, Wang J (2012) Composition- and phase-controlled high-magnetic-moment Fe1xCox nanoparticles for biomedical applications. IEEE Trans Magn 49:197–200. https://doi.org/10.1109/TMAG.2012.2226236

    Article  Google Scholar 

  90. Vadillo V, Gómez A, Berasategi J, Gutiérrez J, Insausti M, de Muro IG, Garitaonandia JS, Arbe A, Iturrospe A, Bou-Alib MM, Manuel Barandiara J (2021) High magnetization FeCo nanoparticles for magnetorheological fluids with enhanced response. Soft Matter 17:840–852. https://doi.org/10.1039/D0SM01702G

    Article  CAS  Google Scholar 

  91. Rajesh P, Sellaiyan S, Uedono A, Arun T, Justin Joseyphus R (2018) Positron annihilation studies on chemically synthesized FeCo alloy. Sci Rep 8:9764. https://doi.org/10.1038/s41598-018-27949-2

    Article  CAS  Google Scholar 

  92. Liu J, Wu K, Wang J (2016) Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure. AIP Adv 6:056126. https://doi.org/10.1063/1.4945042

    Article  CAS  Google Scholar 

  93. Karipoth P, Thirumurugan A, Joseyphus RJ (2013) Synthesis and magnetic properties of flower-like FeCo particles through a one pot polyol process. J Colloid Interface Sci 404:49–55. https://doi.org/10.1016/j.jcis.2013.04.041

    Article  CAS  Google Scholar 

  94. Zhang TZ, Ma G, Li Z, Wang B, Zhao Y, Luo Y (2016) Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT). J Solid State Chem 237:394–403. https://doi.org/10.1016/j.jssc.2016.02.036

    Article  CAS  Google Scholar 

  95. Berasategi J, Salazar D, Gomez A, Gutirrez J, San Sebastian M, Bou-Ali M, Barandiaran JM (2020) Anisotropic behaviour analysis of silicone/carbonyl iron particles magnetorheological elastomers. Rheol Acta 59(7):469–476. https://doi.org/10.1007/s00397-020-01218-4

    Article  CAS  Google Scholar 

  96. Reddy GS, Sahu SR, Prakash R, Jagannatham M (2019) Synthesis of cobalt-rich alloys with high saturation magnetization: a novel synthetic approach by hydrazine reduction method. Results Phys 12:652–661. https://doi.org/10.1016/j.rinp.2018.12.016

    Article  Google Scholar 

  97. Samouhos S, McKinley G (2007) Carbon nanotube-magnetite composites, with applications to developing unique magnetorheological fluids. J Fluids Eng 129(4):429–437. https://doi.org/10.1115/1.2436581

    Article  CAS  Google Scholar 

  98. Spaldin NA (2011) Ferromagnetic domains. Magnetic Materials, 2nd edn. Cambridge, Cambridge University Press (Chapter 7)

    Google Scholar 

  99. Bagheri G, Bonadonna C (2016) On the drag of freely falling nonspherical particles. Powder Technol 301:526–544. https://doi.org/10.1016/j.powtec.2016.06.015

    Article  CAS  Google Scholar 

  100. Pugh BK, Kramer DP, Chen CH (2011) Demagnetizing factors for various geometries precisely determined using 3-D electromagnetic field simulation. IEEE Trans Magn 47(10):4100–4103. https://doi.org/10.1109/TMAG.2011.2157994

    Article  Google Scholar 

  101. Prozorov R, Kogan VG (2018) Effective demagnetizing factors of diamagnetic samples of various shapes. Phys Rev Appl 10:014030. https://doi.org/10.1103/PhysRevApplied.10.014030

    Article  CAS  Google Scholar 

  102. Vereda F, de Vicente J, Hidalgo-Alvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. ChemPhysChem 10:1165–1179. https://doi.org/10.1002/cphc.200900091

    Article  CAS  Google Scholar 

  103. Graham CD, Lorenz BE (2007) Experimental demagnetizing factors for disk samples magnetized along a diameter. IEEE Trans Magn 43(6):2743–2745. https://doi.org/10.1109/TMAG.2007.893854

    Article  Google Scholar 

  104. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70. https://doi.org/10.1016/0032-5910(89)80008-7

    Article  CAS  Google Scholar 

  105. Gabitto J, Tsouris C (2008) Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol 183:314–322. https://doi.org/10.1016/j.powtec.2007.07.031

    Article  CAS  Google Scholar 

  106. Jennings BR, Parslow K (1988) Particle size measurement: the equivalent spherical diameter. Proc R Soc Lond Ser A 419:137–149. https://doi.org/10.1098/rspa.1988.0100

    Article  CAS  Google Scholar 

  107. Akanni O, Chunkai Fu, Guo B (2021) Drag coefficients of irregularly shaped particles in newtonian fluids. Sustainability 13(14):7517. https://doi.org/10.3390/su13147517

    Article  CAS  Google Scholar 

  108. Komar PD, Reimers CE (1978) Grain shape effects on settling rates. J Geol 86:193–209. https://doi.org/10.1086/649674

    Article  Google Scholar 

  109. Dharmarajah AH (1982) Effect of particle shape on prediction of velocity-voidage relationship in fluidized solid-liquid systems. Retrospective theses and dissertations. 7535. https://lib.dr.iastate.edu/rtd/7535

  110. Chiriac H, Stoian G (2009) Influence of the particles size and size distribution on the magnetorheological fluids properties. IEEE Trans Magn 45(10):4049–4051. https://doi.org/10.1109/TMAG.2009.2024633

    Article  Google Scholar 

  111. Sherman SG, Wereley NM (2013) Effect of particle size distribution on chain structures in magnetorheological fluids. IEEE Trans Magn 49(7):3430–3433. https://doi.org/10.1109/TMAG.2013.2245409

    Article  Google Scholar 

  112. Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P (2011) Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 289(7):799–805. https://doi.org/10.1007/s00396-011-2398-8

    Article  CAS  Google Scholar 

  113. Xi J, Zhang Q, Xie S, Yodyingyong S, Park K, Sun Y, Li J, Cao G (2011) Fabrication of TiO2 aggregates by electrospraying and their application in dye-sensitized solar cells. Nanosci Nanotechnol Lett 3:690–696. https://doi.org/10.1166/nnl.2011.1223

    Article  CAS  Google Scholar 

  114. Li X, Zhang Y, Zhang Z, Zhou J, Song J, Lu B, Xie E, Lan W (2011) Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency. J Power Sources 196(3):1639–1644. https://doi.org/10.1016/j.jpowsour.2010.09.017

    Article  CAS  Google Scholar 

  115. Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127. https://doi.org/10.1016/j.nanoen.2016.04.043

    Article  CAS  Google Scholar 

  116. Shah K, Seong MS, Upadhyay R, Choi SB (2013) A low sedimentation magnetorheological fluid based on plate-like iron particles, and verification using a damper test. Smart Mater Struct 23(2):027001. https://doi.org/10.1088/0964-1726/23/2/027001

    Article  CAS  Google Scholar 

  117. Ruiz-López JA, Fernández-Toledano JC, Hidalgo-Alvarez R, de Vicente J (2016) Testing the mean magnetization approximation, dimensionless and scaling numbers in magnetorheology. Soft Matter 12(5):1468–1476. https://doi.org/10.1039/C5SM02267C

    Article  CAS  Google Scholar 

  118. Kim J, Hong SM, Kwak S, Seo Y (2009) Physical properties of nanocomposites prepared by in situpolymerization of high-density polyethylene on multiwalled carbon nanotubes. Phys Chem Chem Phys 11:10851–10859. https://doi.org/10.1039/B913527H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Institute of Advanced Materials (RIAM) at Seoul National University in Korea.

Funding

This work was funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) through the Technology Innovation Program (#20015971, “Development of piezoelectric fluoropolymers and their applied technology”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyoung Jin Choi or Yongsok Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Lim, J., Han, S. et al. How to resolve the trade-off between performance and long-term stability of magnetorheological fluids. Korea-Aust. Rheol. J. 34, 243–290 (2022). https://doi.org/10.1007/s13367-022-00036-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00036-9

Keywords

Navigation