Skip to main content
Log in

A Half-Analytical Method to Predict the Sound Absorption of Multiple Inhomogeneous Resonators Based on Sellers’ Method

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

This study proposes a general half-analytical method to predict the sound absorption of multiple inhomogeneous resonators inspired by Sellers’ method with small calculation cost. In this method, the sound absorption coefficient of single units is calculated by the finite element method (FEM), and superposition is used to predict the sound absorption coefficient of the overall structure. Unlike existing fully analytical methods that have difficulties with complicated or novel constructions, we combine FEM and the analytical method called the half-analytical method (HAE), which predicts sound absorption performance with excellent results. Two example structures are tested and the absorption coefficients from the analytical method, FEM, present method, and experiment show excellent agreement. The novel HAE method is promising to accurately predict the sound absorption coefficient of multiple inhomogeneous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma, G.C., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016)

    Article  Google Scholar 

  2. Cao, L.T., Fu, Q.X., Si, Y., Ding, B., Yu, J.Y.: Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018)

    Article  Google Scholar 

  3. Yang, M., Sheng, P.: Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res 47(1), 83–114 (2017)

    Article  Google Scholar 

  4. Zhu, J.L., Sun, J., Tang, H.P., Wang, J.Z., Ao, Q.B., Bao, T.F., Song, W.D.: Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder Technol. 301, 1235–1241 (2016)

    Article  Google Scholar 

  5. Sakagami, K., Morimoto, M., Yairi, M.: A note on the relationship between the sound absorption by microperforated panels and panel/membrane-type absorbers. Appl. Acoust. 70, 1131–1136 (2009)

    Article  Google Scholar 

  6. Toyoda, M., Sakagami, K., Takahashi, D., Morimoto, M.: Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers. Appl. Acoust. 72, 943–948 (2011)

    Article  Google Scholar 

  7. Cambonie, T., Mbailassem, F., Gourdon, E.: Bending a quarter wavelength resonator: curvature effects on sound absorption properties. Appl. Acoust. 131, 87–102 (2018)

    Article  Google Scholar 

  8. Climente, A., Torrent, D., Sánchez-Dehesa, J.: Omnidirectional broadband acoustic absorber based on metamaterials. Appl. Phys. Lett. 100, 144103 (2012)

    Article  Google Scholar 

  9. Zhang, X., Qu, Z., Xu, Y.: Enhanced sound absorption in two-dimensional continuously graded phononic crystals. Jpn. J. Appl. Phys. 58, 090904 (2019)

    Article  Google Scholar 

  10. Tang, Y., Ren, S., Meng, H., Xin, F., Huang, L., Chen, T., Zhang, C., Lu, T.J.: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  11. Xie, S., Li, Z., Yan, H., Yang, S.: Ultra-broadband sound absorption performance of a multi-cavity composite structure filled with polyurethane. Appl. Acoust. 189, 108612 (2022)

    Article  Google Scholar 

  12. Yang, C., Cheng, L.: Sound absorption of microperforated panels inside compact acoustic enclosures. J. Sound Vib. 360, 140–155 (2016)

    Article  Google Scholar 

  13. Bucciarelli, F., Malfense Fierro, G.P., Meo, M.: A multilayer microperforated panel prototype for broadband sound absorption at low frequencies. Appl. Acoust. 146, 134–144 (2019)

    Article  Google Scholar 

  14. Zhang, X., Wu, J., Mao, Q., Zhou, W., Xiong, Y.: Design of a honeycomb-microperforated panel with an adjustable sound absorption frequency. Appl. Acoust. 164, 107246 (2020)

    Article  Google Scholar 

  15. Wang, C., Huang, L.: On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. J. Acoust. Soc. Am. 130, 208–218 (2011)

    Article  Google Scholar 

  16. Kim, H.S., Ma, P.S., Kim, S.R., Lee, S.H., Seo, Y.H.: A model for the sound absorption coefficient of multi-layered elastic micro-perforated plates. J. Sound Vib. 430, 75–92 (2018)

    Article  Google Scholar 

  17. Bravo, T., Maury, C., Pinhède, C.: Absorption and transmission of boundary layer noise through flexible multi-layer micro-perforated structures. J. Sound Vib. 395, 201–223 (2017)

    Article  Google Scholar 

  18. Shen, C., Liu, Y., Huang, L.: On acoustic absorption mechanisms of multiple coupled quarter-wavelength resonators: Mutual impedance effects. J. Sound Vib. 508, 116202 (2021)

    Article  Google Scholar 

  19. Maa, D.Y.: Theory and design of microperforated panel sound-absorbing constructions. Sci. Sinica 18, 55–71 (1975)

    Google Scholar 

  20. Maa, D.Y.: Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104, 2861–2866 (1998)

    Article  Google Scholar 

  21. Laly, Z., Atalla, N., Meslioui, S.A.: Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach. J. Sound Vib. 427, 134–158 (2018)

    Article  Google Scholar 

  22. Allard, J., Atalla, N.: Propagation of sound in porous media: modelling sound absorbing materials. Wiley (2009)

    Book  Google Scholar 

  23. Yan, S., Wu, J., Chen, J., Xiong, Y., Mao, Q., Zhang, X.: Optimization design and analysis of honeycomb micro-perforated plate broadband sound absorber. Appl. Acoust. 186, 108487 (2022)

    Article  Google Scholar 

  24. Peng, X., Ji, J., Jing, Y.: Composite honeycomb metasurface panel for broadband sound absorption. J. Acoust. Soc. Am. 144, EL255 (2018)

    Article  Google Scholar 

  25. Lee, D.H., Kwon, Y.P.: Estimation of the absorption performance of multiple layer perforated panel systems by transfer matrix method. J. Sound Vib. 278, 847–860 (2004)

    Article  Google Scholar 

  26. Munjal, M.L.: Acoustics of Ducts and Mufflers. New York (1987)

  27. Guo, J., Zhang, X., Fang, Y., Jiang, Z.: Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks. Compos. Struct. 260, 113538 (2021)

    Article  Google Scholar 

  28. Park, S.H.: Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 332, 4895–4911 (2013)

    Article  Google Scholar 

  29. Wang, Y., Zhang, C., Ren, L., Ichchou, M., Galland, M.-A., Bareille, O.: Sound absorption of a new bionic multi-layer absorber. Compos. Struct. 108, 400–408 (2014)

    Article  Google Scholar 

  30. Santoni, A., Bonfiglio, P., Fausti, P., Pompoli, F.: Computation of the Alpha Cabin sound absorption coefficient by using the finite transfer matrix method (FTMM): inter-laboratory test on porous media. J. Vib. Acoust. 143, 021012 (2021)

    Article  Google Scholar 

  31. Zhang, Z., Li, Z., Li, T., Huang, Q.: A novel semi-analytical approach for predicting the sound absorptions of a new underwater composite coating with transversely arranged SWCNTs. Compos. Struct. 274, 114335 (2021)

    Article  Google Scholar 

  32. Lee, C.M., Xu, Y.: A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials. J. Sound Vib. 326, 290–301 (2009)

    Article  Google Scholar 

  33. Wang, L., Li, X., Ren, J., Jiang, H.: Effect of row spacing on the accuracy of film cooling superposition method. In: Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, vol. 51104, p. V05CT19A025 (2018)

  34. Sellers, J.P.: Gaseous film cooling with multiple injection stations. AIAA J. 1, 2154–2156 (1963)

    Article  Google Scholar 

  35. Sui, N., Yan, X., Huang, T.Y., Xu, J., Yuan, F.G., Jing, Y.: A lightweight yet sound-proof honeycomb acoustic metamaterial. Appl. Phys. Lett. 106, 171905 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB1708303), the National Natural Science Foundation of China (Nos. U1808215 and 12072058), and the Fundamental Research Funds for the Central Universities of China (DUT20LK02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Chen, W., Wang, X. et al. A Half-Analytical Method to Predict the Sound Absorption of Multiple Inhomogeneous Resonators Based on Sellers’ Method. Acoust Aust 50, 355–364 (2022). https://doi.org/10.1007/s40857-022-00274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-022-00274-5

Keywords

Navigation