Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Establishment of New Genetic Markers and Methods for Sex Determination of Mouse and Human Cells using Polymerase Chain Reactions and Crude DNA Samples

Author(s): Keyin Zhang, Jianglin Yang, Zhenwei Qin, Tianzu Lu, Didong Lou, Qianchuan Ran, Hai Huang, Shuqiang Cheng, Lucas Zellmer, Hong Ma* and Dezhong J. Liao*

Volume 23, Issue 4, 2022

Published on: 21 June, 2022

Page: [275 - 288] Pages: 14

DOI: 10.2174/1389202923666220610121344

Price: $65

Abstract

Background: The currently available methods for sexing human or mouse cells have weaknesses. Therefore, it is necessary to establish new methods.

Methods: We used bioinformatics approach to identify genes that have alleles on both the X and Y chromosomes of mouse and human genomes and have a region showing a significant difference between the X and Y alleles. We then used polymerase chain reactions (PCR) followed by visualization of the PCR amplicons in agarose gels to establish these genomic regions as genetic sex markers.

Results: Our bioinformatics analyses identified eight mouse sex markers and 56 human sex markers that are new, i.e. are previously unreported. Six of the eight mouse markers and 14 of the 56 human markers were verified using PCR and ensuing visualization of the PCR amplicons in agarose gels. Most of the tested and untested sex markers possess significant differences in the molecular weight between the X- and Y-derived PCR amplicons and are thus much better than most, if not all, previously-reported genetic sex markers. We also established several simple and essentially cost-free methods for extraction of crude genomic DNA from cultured cells, blood samples, and tissues that could be used as template for PCR amplification.

Conclusion: We have established new sex genetic markers and methods for extracting genomic DNA and for sexing human and mouse cells. Our work may also lend some methodological strategies to the identification of new genetic sex markers for other organismal species.

Keywords: Sex determination, DNA extraction, genetic sex marker, genomic DNA, X chromosome, Y chromosome.

Graphical Abstract
[1]
Shah, K.; McCormack, C.E.; Bradbury, N.A. Do you know the sex of your cells? Am. J. Physiol. Cell Physiol., 2014, 306(1), C3-C18.
[http://dx.doi.org/10.1152/ajpcell.00281.2013] [PMID: 24196532]
[2]
Durkin, A.S.; Cedrone, E.; Sykes, G.; Boles, D.; Reid, Y.A. Utility of gender determination in cell line identity. In Vitro Cell. Dev. Biol. Anim., 2000, 36(6), 344-347.
[http://dx.doi.org/10.1290/1071-2690(2000)036<0344:UOGDIC>2.0.CO;2] [PMID: 10949990]
[3]
Gamble, T.; Zarkower, D. Identification of sex-specific molecular markers using restriction site-associated DNA sequencing. Mol. Ecol. Resour., 2014, 14(5), 902-913.
[http://dx.doi.org/10.1111/1755-0998.12237] [PMID: 24506574]
[4]
Feron, R.; Pan, Q.; Wen, M.; Imarazene, B.; Jouanno, E.; Anderson, J.; Herpin, A.; Journot, L.; Parrinello, H.; Klopp, C.; Kottler, V.A.; Roco, A.S.; Du, K.; Kneitz, S.; Adolfi, M.; Wilson, C.A.; McCluskey, B.; Amores, A.; Desvignes, T.; Goetz, F.W.; Takanashi, A.; Kawaguchi, M.; Detrich, H.W., III; Oliveira, M.A.; Nóbrega, R.H.; Sakamoto, T.; Nakamoto, M.; Wargelius, A.; Karlsen, Ø.; Wang, Z.; Stöck, M.; Waterhouse, R.M.; Braasch, I.; Postlethwait, J.H.; Schartl, M.; Guiguen, Y. RADSex: A computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol. Ecol. Resour., 2021, 21(5), 1715-1731.
[http://dx.doi.org/10.1111/1755-0998.13360] [PMID: 33590960]
[5]
Clapcote, S.J.; Roder, J.C. Simplex PCR assay for sex determination in mice. Biotechniques, 2005, 38(5), 702-706,-704, 706..
[http://dx.doi.org/10.2144/05385BM05] [PMID: 15945368]
[6]
Lambert, J.F.; Benoit, B.O.; Colvin, G.A.; Carlson, J.; Delville, Y.; Quesenberry, P.J. Quick sex determination of mouse fetuses. J. Neurosci. Methods, 2000, 95(2), 127-132.
[http://dx.doi.org/10.1016/S0165-0270(99)00157-0] [PMID: 10752483]
[7]
McFarlane, L.; Truong, V.; Palmer, J.S.; Wilhelm, D. Novel PCR assay for determining the genetic sex of mice. Sex Dev., 2013, 7(4), 207-211.
[http://dx.doi.org/10.1159/000348677] [PMID: 23571295]
[8]
Navarro-Romero, M.T.; Muñoz, M.L.; Alcala-Castañeda, E.; Terreros-Espinosa, E.; Domínguez-de-la-Cruz, E.; García-Hernández, N.; Moreno-Galeana, M.Á. A novel method of male sex identification of human ancient skeletal remains. Chromosome Res., 2020, 28(3-4), 277-291.
[http://dx.doi.org/10.1007/s10577-020-09634-1] [PMID: 32621020]
[9]
von Wurmb-Schwark, N.; Bosinski, H.; Ritz-Timme, S. What do the X and Y chromosomes tell us about sex and gender in forensic case analysis? J. Forensic Leg. Med., 2007, 14(1), 27-30.
[http://dx.doi.org/10.1016/j.jcfm.2005.09.003] [PMID: 16931101]
[10]
Murata, C.; Kuroki, Y.; Imoto, I.; Kuroiwa, A. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. Chromosome Res., 2016, 24(3), 407-419.
[http://dx.doi.org/10.1007/s10577-016-9531-y] [PMID: 27333765]
[11]
Burgoyne, P.S.; Arnold, A.P. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol. Sex Differ., 2016, 7, 68.
[http://dx.doi.org/10.1186/s13293-016-0115-5]
[12]
Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; Chinwalla, A.; Delehaunty, A.; Delehaunty, K.; Du, H.; Fewell, G.; Fulton, L.; Fulton, R.; Graves, T.; Hou, S.F.; Latrielle, P.; Leonard, S.; Mardis, E.; Maupin, R.; McPherson, J.; Miner, T.; Nash, W.; Nguyen, C.; Ozersky, P.; Pepin, K.; Rock, S.; Rohlfing, T.; Scott, K.; Schultz, B.; Strong, C.; Tin-Wollam, A.; Yang, S.P.; Waterston, R.H.; Wilson, R.K.; Rozen, S.; Page, D.C. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 2003, 423(6942), 825-837.
[http://dx.doi.org/10.1038/nature01722] [PMID: 12815422]
[13]
Kido, T.; Lau, Y.F. Roles of the Y chromosome genes in human cancers. Asian J. Androl., 2015, 17(3), 373-380.
[PMID: 25814157]
[14]
Lau, Y.C. Y chromosome in health and diseases. Cell Biosci., 2020, 10, 97.
[http://dx.doi.org/10.1186/s13578-020-00452-w]
[15]
O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; Astashyn, A.; Badretdin, A.; Bao, Y.; Blinkova, O.; Brover, V.; Chetvernin, V.; Choi, J.; Cox, E.; Ermolaeva, O.; Farrell, C.M.; Goldfarb, T.; Gupta, T.; Haft, D.; Hatcher, E.; Hlavina, W.; Joardar, V.S.; Kodali, V.K.; Li, W.; Maglott, D.; Masterson, P.; McGarvey, K.M.; Murphy, M.R.; O’Neill, K.; Pujar, S.; Rangwala, S.H.; Rausch, D.; Riddick, L.D.; Schoch, C.; Shkeda, A.; Storz, S.S.; Sun, H.; Thibaud-Nissen, F.; Tolstoy, I.; Tully, R.E.; Vatsan, A.R.; Wallin, C.; Webb, D.; Wu, W.; Landrum, M.J.; Kimchi, A.; Tatusova, T.; DiCuccio, M.; Kitts, P.; Murphy, T.D.; Pruitt, K.D. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res., 2016, 44(D1), D733-D745.
[http://dx.doi.org/10.1093/nar/gkv1189] [PMID: 26553804]
[16]
Jobling, M.A.; Tyler-Smith, C. Human Y-chromosome variation in the genome-sequencing era. Nat. Rev. Genet., 2017, 18(8), 485-497.
[http://dx.doi.org/10.1038/nrg.2017.36] [PMID: 28555659]
[17]
Jangravi, Z.; Alikhani, M.; Arefnezhad, B.; Sharifi Tabar, M.; Taleahmad, S.; Karamzadeh, R.; Jadaliha, M.; Mousavi, S.A.; Ahmadi Rastegar, D.; Parsamatin, P.; Vakilian, H.; Mirshahvaladi, S.; Sabbaghian, M.; Mohseni Meybodi, A.; Mirzaei, M.; Shahhoseini, M.; Ebrahimi, M.; Piryaei, A.; Moosavi-Movahedi, A.A.; Haynes, P.A.; Goodchild, A.K.; Nasr-Esfahani, M.H.; Jabbari, E.; Baharvand, H.; Sedighi Gilani, M.A.; Gourabi, H.; Salekdeh, G.H. A fresh look at the male-specific region of the human Y chromosome. J. Proteome Res., 2013, 12(1), 6-22.
[http://dx.doi.org/10.1021/pr300864k] [PMID: 23253012]
[18]
Heydari, R.; Jangravi, Z.; Maleknia, S.; Seresht-Ahmadi, M.; Bahari, Z.; Salekdeh, G.H.; Meyfour, A. Y chromosome is moving out of sex determination shadow. Cell Biosci., 2022, 12(1), 4.
[http://dx.doi.org/10.1186/s13578-021-00741-y] [PMID: 34983649]
[19]
Hofstetter, J.R.; Zhang, A.; Mayeda, A.R.; Guscar, T.; Nurnberger, J.I., Jr; Lahiri, D.K. Genomic DNA from mice: A comparison of recovery methods and tissue sources. Biochem. Mol. Med., 1997, 62(2), 197-202.
[http://dx.doi.org/10.1006/bmme.1997.2637] [PMID: 9441873]
[20]
Lahiri, D.K.; Nurnberger, J.I. Jr A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res., 1991, 19(19), 5444.
[http://dx.doi.org/10.1093/nar/19.19.5444] [PMID: 1681511]
[21]
Lahiri, D.K.; Bye, S.; Nurnberger, J.I., Jr; Hodes, M.E.; Crisp, M. A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J. Biochem. Biophys. Methods, 1992, 25(4), 193-205.
[http://dx.doi.org/10.1016/0165-022X(92)90014-2] [PMID: 1494032]
[22]
Lahiri, D.K.; Schnabel, B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet., 1993, 31(7-8), 321-328.
[http://dx.doi.org/10.1007/BF00553174] [PMID: 8274138]
[23]
Fallon, H.J.; Frei, E., III; Davidson, J.D.; Trier, J.S.; Burk, D. Leukocyte preparations from human blood: Evaluation of their morphologic and metabolic state. J. Lab. Clin. Med., 1962, 59, 779-791.
[PMID: 13891473]
[24]
Thomson, A.E.; Bull, J.M.; Robinson, M.A. A procedure for separating viable lymphocytes from human blood and some studies on their susceptibility to hypotonic shocks. Br. J. Haematol., 1966, 12(4), 433-446.
[http://dx.doi.org/10.1111/j.1365-2141.1966.tb05652.x] [PMID: 5944490]
[25]
Dain, A.R.; Hall, J.G. A method for the isolation of white cells from the blood of sheep by differential lysis with hypotonic saline solutions. Vox Sang., 1967, 13(3), 281-284.
[http://dx.doi.org/10.1111/j.1423-0410.1967.tb03397.x] [PMID: 6033403]
[26]
Gao, X.; Zhang, KY.; Lu, TZ.; Zhao, Y.; Zhou, HY.; Yu, YQ.; Zellmer, L.; He, Y.; Huang, H.; Liao, D. A reassessment of several erstwhile methods for isolating DNA fragments from agarose gels 3 Biotech, 2021, 138 2691
[http://dx.doi.org/10.1007/s13205-021-02691-1]
[27]
Sun, Y.; Sriramajayam, K.; Luo, D.; Liao, D.J. A quick, cost-free method of purification of DNA fragments from agarose gel. J. Cancer, 2012, 3, 93-95.
[http://dx.doi.org/10.7150/jca.4163] [PMID: 22359530]
[28]
Rogers, M.J. Y chromosome copy number variation and its effects on fertility and other health factors: A review. Transl. Androl. Urol., 2021, 10(3), 1373-1382.
[http://dx.doi.org/10.21037/tau.2020.04.06] [PMID: 33850773]
[29]
Zhou, W.; Machiela, M.J.; Freedman, N.D.; Rothman, N.; Malats, N.; Dagnall, C.; Caporaso, N.; Teras, L.T.; Gaudet, M.M.; Gapstur, S.M.; Stevens, V.L.; Jacobs, K.B.; Sampson, J.; Albanes, D.; Weinstein, S.; Virtamo, J.; Berndt, S.; Hoover, R.N.; Black, A.; Silverman, D.; Figueroa, J.; Garcia-Closas, M.; Real, F.X.; Earl, J.; Marenne, G.; Rodriguez-Santiago, B.; Karagas, M.; Johnson, A.; Schwenn, M.; Wu, X.; Gu, J.; Ye, Y.; Hutchinson, A.; Tucker, M.; Perez-Jurado, L.A.; Dean, M.; Yeager, M.; Chanock, S.J. Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat. Genet., 2016, 48(5), 563-568.
[http://dx.doi.org/10.1038/ng.3545] [PMID: 27064253]
[30]
Brinkmann, B. Is the amelogenin sex test valid? Int. J. Legal Med., 2002, 63, 263.
[http://dx.doi.org/10.1007/s00414-001-0263-x]
[31]
Peng, Z.; Yuan, C.; Zellmer, L.; Liu, S.; Xu, N.; Liao, D.J. Hypothesis: Artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers. J. Cancer, 2015, 6(6), 555-567.
[http://dx.doi.org/10.7150/jca.11997] [PMID: 26000048]
[32]
Xie, B.; Yang, W.; Ouyang, Y.; Chen, L.; Jiang, H.; Liao, Y.; Liao, D.J. Two Rnas or dnas may artificially fuse together at a Short Homologous Sequence (SHS) during reverse transcription or polymerase chain reactions, and thus reporting an shs-containing chimeric RNA requires extra caution. PLoS One, 2016, 11(5), e0154855.
[http://dx.doi.org/10.1371/journal.pone.0154855]
[33]
Yuan, C.; Han, Y.; Zellmer, L.; Yang, W.; Guan, Z.; Yu, W.; Huang, H.; Liao, D.J. It is imperative to establish a pellucid definition of chimeric RNA and to clear up a lot of confusion in the relevant research. Int. J. Mol. Sci., 2017, 18(4), E714.
[http://dx.doi.org/10.3390/ijms18040714] [PMID: 28350330]
[34]
Čerenak, A; Kolenc, Z; Sehur, P; Whittock, S.P; Koutoulis, A; Beatson, R; Buck, E; Javornik, B New male specific markers for hop and application in breeding program Sci. Rep, 2019, 9(1), 14223.
[http://dx.doi.org/10.1038/s41598-019-50400-z]
[35]
Kroczak, A. Wołoszyńska, M.; Wierzbicki, H.; Kurkowski, M.; Grabowski, K. A.; Piasecki, T.; Galosi, L.; Urantówka, A. D. New bird sexing strategy developed in the order psittaciformes involves multiple markers to avoid sex misidentification: Debunked myth of the universal DNA marker. Genes (Basel), 2021, 12(6), 878.
[http://dx.doi.org/10.3390/genes12060878]
[36]
Adolfi, M.C.; Du, K.; Kneitz, S.; Cabau, C.; Zahm, M.; Klopp, C.; Feron, R.; Paixão, R.V.; Varela, E.S.; de Almeida, F.L.; de Oliveira, M.A.; Nóbrega, R.H.; Lopez-Roques, C.; Iampietro, C.; Lluch, J.; Kloas, W.; Wuertz, S.; Schaefer, F.; Stöck, M.; Guiguen, Y.; Schartl, M. A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas). Sci. Rep., 2021, 11(1), 21544.
[http://dx.doi.org/10.1038/s41598-021-01066-z]
[37]
Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; Shi, W.; Tan, H.; Wang, T.; Wang, X.; Wong, B.M.; Xiao, X.; Yu, X.; Zhu, J.J.; Zhang, H. Machine Learning: New ideas and tools in environmental science and engineering. Environ. Sci. Technol., 2021, 55(19), 12741-12754.
[http://dx.doi.org/10.1021/acs.est.1c01339] [PMID: 34403250]
[38]
Raza, A.; Bardhan, S.; Xu, L.H.; Yamijala, S.S.R.K.C.; Lian, C.; Kwon, H.; Wong, B.M. A machine learning approach for predicting Defluorination of Per- and Polyfluoroalkyl Substances (PFAS) for their efficient treatment and removal. Environ. Sci. Technol. Lett., 2019, 6(10), 624-629.
[http://dx.doi.org/10.1021/acs.estlett.9b00476]
[39]
Wilson Sayres, M.A. Genetic diversity on the sex chromosomes. Genome Biol. Evol., 2018, 10(4), 1064-1078.
[http://dx.doi.org/10.1093/gbe/evy039] [PMID: 29635328]
[40]
Furman, B.L.S.; Metzger, D.C.H.; Darolti, I.; Wright, A.E.; Sandkam, B.A.; Almeida, P.; Shu, J.J.; Mank, J.E. Sex chromosome evolution: So many exceptions to the rules. Genome Biol. Evol., 2020, 12(6), 750-763.
[http://dx.doi.org/10.1093/gbe/evaa081] [PMID: 32315410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy