Skip to main content

Advertisement

Log in

Human cytomegalovirus (HCMV) long-term shedding and HCMV-specific immune response in pregnant women with primary HCMV infection

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (HCMV) shedding has been extensively investigated in newborns and in young children, however, much less is known about it in immunocompetent adults. Shedding of HCMV was investigated in saliva, vaginal secretions and urine of pregnant women experiencing primary infection along with the development of the HCMV-specific immune response. Thirty-three pregnant women shed HCMV DNA in peripheral biological fluids at least until one year after onset of infection, while in blood HCMV DNA was cleared earlier. Significantly higher levels of viral load were found in vaginal secretions compared to saliva and urine. All subjects examined two years after the onset of infection showed a high avidity index, with IgM persisting in 36% of women. Viral load in blood was directly correlated with levels of HCMV-specific IgM and inversely correlated with levels of IgG specific for the pentameric complex gH/gL/pUL128L; in addition, viral load in blood was inversely correlated with percentage of HCMV-specific CD4+ and CD8+ expressing IL-7R (long-term memory, LTM) while viral load in biological fluids was inversely correlated with percentage of HCMV-specific CD4+ and CD8+ effector memory RA+(TEMRA). In conclusion, viral shedding during primary infection in pregnancy persists in peripheral biological fluids for at least one year and the development of both antibodies (including those directed toward the pentameric complex) and memory T cells are associated with viral clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cannon MJ, Davis KF (2005) Washing our hands of the congenital cytomegalovirus disease epidemic. BMC Public Health 5:70. https://doi.org/10.1186/1471-2458-5-70

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 17(4):253–276. https://doi.org/10.1002/rmv.535

    Article  PubMed  Google Scholar 

  3. Lilleri D, Fornara C, Furione M, Zavattoni M, Revello MG, Gerna G (2007) Development of human cytomegalovirus-specific T cell immunity during primary infection of pregnant women and its correlation with virus transmission to the fetus. J Infect Dis 195(7):1062–1070. https://doi.org/10.1086/512245

    Article  PubMed  Google Scholar 

  4. Fornara C, Lilleri D, Revello MG, Furione M, Zavattoni M, Lenta E, Gerna G (2011) Kinetics of effector functions and phenotype of virus-specific and γδ T lymphocytes in primary human cytomegalovirus infection during pregnancy. J Clin Immunol 31(6):1054–1064. https://doi.org/10.1007/s10875-011-9577-8

    Article  CAS  PubMed  Google Scholar 

  5. Lilleri D, Kabanova A, Revello MG et al (2013) Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS ONE 8:e59863. https://doi.org/10.1371/journal.pone.0059863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mele F, Fornara C, Jarrossay D et al (2017) Phenotype and specificity of T cells in primary human cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is associated with protection from vertical transmission. PLoS ONE 12:e0187731. https://doi.org/10.1371/journal.pone.0187731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fornara C, Furione M, Zavaglio F, Arossa A, Spinillo A, Gerna G, Lilleri D (2021) Slow cytomegalovirus-specific CD4+ and CD8+ T-cell differentiation: 10-year follow-up of primary infection in a small number of immunocompetent hosts. Eur J Immunol 51(1):253–256. https://doi.org/10.1002/eji.202048772

    Article  CAS  PubMed  Google Scholar 

  8. Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83. https://doi.org/10.1007/978-3-540-77349-8_4

    Article  CAS  PubMed  Google Scholar 

  9. Cannon MJ, Hyde TB, Schmid DS (2011) Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol 21(4):240–255. https://doi.org/10.1002/rmv.695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mayer BT, Matrajt L, Casper C et al (2016) Dynamics of persistent oral cytomegalovirus shedding during primary infection in ugandan infants. J Infect Dis 214(11):1735–1743. https://doi.org/10.1093/infdis/jiw442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zanghellini F, Boppana SB, Emery VC, Griffiths PD, Pass RF (1999) Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180(3):702–707. https://doi.org/10.1086/314939

    Article  CAS  PubMed  Google Scholar 

  12. Tu W, Chen S, Sharp M et al (2004) Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol 172(5):3260–3267. https://doi.org/10.4049/jimmunol.172.5.3260

    Article  CAS  PubMed  Google Scholar 

  13. Revello MG, Furione M, Rognoni V, Arossa A, Gerna G (2014) Cytomegalovirus DNAemia in pregnant women. J Clin Virol 61(4):590–592. https://doi.org/10.1016/j.jcv.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Sarasini A, Arossa A, Zavattoni M et al (2021) Pitfalls in the serological diagnosis of primary human cytomegalovirus infection in pregnancy due to different kinetics of IgM clearance and IgG avidity index maturation. Diagnostics 11(3):396. https://doi.org/10.3390/diagnostics11030396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lilleri D, Gerna G, Furione M, Zavattoni M, Spinillo A (2016) Neutralizing and ELISA IgG antibodies to human cytomegalovirus glycoprotein complexes may help date the onset of primary infection in pregnancy. J Clin Virol 81:16–24. https://doi.org/10.1016/j.jcv.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  16. Lozza L, Lilleri D, Percivalle E, Fornara C, Comolli G, Revello MG, Gerna G (2005) Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. Eur J Immunol 35(6):1795–1804. https://doi.org/10.1002/eji.200526023

    Article  CAS  PubMed  Google Scholar 

  17. Fornara C, Furione M, Arossa A, Gerna G, Lilleri D (2016) Comparative magnitude and kinetics of human cytomegalovirus-specific CD4+ and CD8+ T-cell responses in pregnant women with primary versus remote infection and in transmitting versus non-transmitting mothers: its utility for dating primary infection in pregnancy. J Med Virol 88(7):1238–1246. https://doi.org/10.1002/jmv.24449

    Article  CAS  PubMed  Google Scholar 

  18. Stowell JD, Mask K, Amin M et al (2014) Cross-sectional study of cytomegalovirus shedding and immunological markers among seropositive children and their mothers. BMC Infect Dis 14:568. https://doi.org/10.1186/s12879-014-0568-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dollard SC, Keyserling H, Radford K et al (2014) Cytomegalovirus viral and antibody correlates in young children. BMC Res Notes 7:776. https://doi.org/10.1186/1756-0500-7-776

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barbosa NG, Yamamoto AY, Duarte G et al (2018) Cytomegalovirus shedding in seropositive pregnant women from a high-seroprevalence population: the Brazilian cytomegalovirus hearing and maternal secondary infection study. Clin Infect Dis 67(5):743–750. https://doi.org/10.1093/cid/ciy166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zelini P, d’Angelo P, De Cicco M et al (2021) Human cytomegalovirus non-primary infection during pregnancy: antibody response, risk factors and newborn outcome. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2021.09.013

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ju D, Li XZ, Shi YF, Li Y, Guo LQ, Z hang Y, (2020) Cytomegalovirus shedding in seropositive healthy women of reproductive age in Tianjin. China Epidemiol Infect 148:e34. https://doi.org/10.1017/S0950268820000217

    Article  CAS  PubMed  Google Scholar 

  23. Coonrod D, Collier AC, Ashley R, DeRouen T, Corey L (1998) Association between cytomegalovirus seroconversion and upper genital tract infection among women attending a sexually transmitted disease clinic: a prospective study. J Infect Dis 177(5):1188–1193. https://doi.org/10.1086/515292

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Pass RF (2004) Detection of cytomegalovirus infection during clinical trials of glycoprotein B vaccine. Vaccine 23(4):507–510. https://doi.org/10.1016/j.vaccine.2004.06.027

    Article  CAS  PubMed  Google Scholar 

  25. Steininger C, Kundi M, Kletzmayr J, Aberle SW, Popow-Kraupp T (2004) Antibody maturation and viremia after primary cytomegalovirus infection, in immunocompetent patients and kidney-transplant patients. J Infect Dis 190(11):1908–1912. https://doi.org/10.1086/424677

    Article  PubMed  Google Scholar 

  26. Revello MG, Lilleri D, Zavattoni M, Furione M, Genini E, Comolli G, Gerna G (2006) Lymphoproliferative response in primary human cytomegalovirus (HCMV) infection is delayed in HCMV transmitter mothers. J Infect Dis 193(2):269–276. https://doi.org/10.1086/498872

    Article  PubMed  Google Scholar 

  27. Forman MS, Vaidya D, Bolorunduro O, Diener-West M, Pass RF, Arav-Boger R (2017) Cytomegalovirus kinetics following primary infection in healthy women. J Infect Dis 215(10):1523–1526. https://doi.org/10.1093/infdis/jix188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Delforge ML, Costa E, Brancart F et al (2017) Presence of Cytomegalovirus in urine and blood of pregnant women with primary infection might be associated with fetal infection. J Clin Virol 90:14–17. https://doi.org/10.1016/j.jcv.2017.03.004

    Article  PubMed  Google Scholar 

  29. Fornara C, Cassaniti I, Zavattoni M et al (2017) Human cytomegalovirus-specific memory CD4+ T-cell response and its correlation with virus transmission to the fetus in pregnant women with primary infection. Clin Infect Dis 65(10):1659–1665. https://doi.org/10.1093/cid/cix622

    Article  CAS  PubMed  Google Scholar 

  30. Zavattoni M, Furione M, Lanzarini P et al (2016) Monitoring of human cytomegalovirus DNAemia during primary infection in transmitter and non-transmitter mothers. J Clin Virol 82:89–93. https://doi.org/10.1016/j.jcv.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  31. Schoenfisch AL, Dollard SC, Amin M et al (2011) Cytomegalovirus (CMV) shedding is highly correlated with markers of immunosuppression in CMV-seropositive women. J Med Microbiol 60(Pt 6):768–774. https://doi.org/10.1099/jmm.0.027771-0

    Article  PubMed  Google Scholar 

  32. Lilleri D, Kabanova A, Lanzavecchia A, Gerna G (2012) Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. J Clin Immunol 32(6):1324–1331. https://doi.org/10.1007/s10875-012-9739-3

    Article  CAS  PubMed  Google Scholar 

  33. Tabata T, Petitt M, Fang-Hoover J et al (2019) Neutralizing monoclonal antibodies reduce human cytomegalovirus infection and spread in developing placentas. Vaccines 7(4):135. https://doi.org/10.3390/vaccines7040135

    Article  CAS  PubMed Central  Google Scholar 

  34. Choi KY, El-Hamdi NS, McGregor A (2019) Inclusion of the viral pentamer complex in a vaccine design greatly improves protection against congenital cytomegalovirus in the guinea pig model. J Virol 93(22):e01442-e1519. https://doi.org/10.1128/JVI.01442-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jonjić S, Pavić I, Polić B, Crnković I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179:1713–1717. https://doi.org/10.1084/jem.179.5.1713

    Article  PubMed  Google Scholar 

  36. Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101(7):2686–2692. https://doi.org/10.1182/blood-2002-08-2502

    Article  CAS  PubMed  Google Scholar 

  37. Sester U, Gärtner BC, Wilkens H et al (2005) Differences in CMV-specific T-cell levels and long-term susceptibility to CMV infection after kidney, heart and lung transplantation. Am J Transplant 5(6):1483–1489. https://doi.org/10.1111/j.1600-6143.2005.00871.x

    Article  PubMed  Google Scholar 

  38. Gabanti E, Bruno F, Lilleri D et al (2014) Human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells are both required for prevention of HCMV disease in seropositive solid-organ transplant recipients. PLoS ONE 9(8):e106044. https://doi.org/10.1371/journal.pone.0106044

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gabanti E, Lilleri D, Ripamonti F et al (2015) Reconstitution of human cytomegalovirus-specific CD4+ T Cells is critical for control of virus reactivation in hematopoietic stem cell transplant recipients but does not prevent organ infection. Biol Blood Marrow Transplant 21(12):2192–2202. https://doi.org/10.1016/j.bbmt.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  40. Lilleri D, Zelini P, Fornara C et al (2018) Human cytomegalovirus (HCMV)-specific T cell but not neutralizing or IgG binding antibody responses to glycoprotein complexes gB, gHgLgO, and pUL128L correlate with protection against high HCMV viral load reactivation in solid-organ transplant recipients. J Med Virol 90(10):1620–1628. https://doi.org/10.1002/jmv.25225

    Article  CAS  PubMed  Google Scholar 

  41. Antoine P, Varner V, Carville A, Connole M, Marchant A, Kaur A (2014) Postnatal acquisition of primary rhesus cytomegalovirus infection is associated with prolonged virus shedding and impaired CD4+ T lymphocyte function. J Infect Dis 210(7):1090–1099. https://doi.org/10.1093/infdis/jiu215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bialas KM, Tanaka T, Tran D et al (2015) Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. Proc Natl Acad Sci U S A 112(44):13645–13650. https://doi.org/10.1073/pnas.1511526112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Redeker A, Remmerswaal EBM, van der Gracht ETI et al (2018) The contribution of cytomegalovirus infection to immune senescence is set by the infectious dose. Front Immunol 8:1953. https://doi.org/10.3389/fimmu.2017.01953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Giuseppe Gerna for revision of the manuscript and helpful discussion; Valentina Marazzi and Stefania Piccini for collecting the samples.

Funding

This work was supported by Ministero della Salute, Ricerca Corrente [grant number 053618].

Author information

Authors and Affiliations

Authors

Contributions

CF analyzed data and wrote the manuscript. FZ e Pd’A collected the data and performed the experiments. AS supervised the data on antibody response. MF and AA enrolled and followed the patients and provided clinical data. DL conceived the study and revised the study. FB and AS revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Lilleri.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interests.

Ethics approval

The study was approved by the local Ethics Committee (P-20180075214). Informed consent was obtained from all partecipants included in the study.

Additional information

Communicated by Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 972 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornara, C., Zavaglio, F., Furione, M. et al. Human cytomegalovirus (HCMV) long-term shedding and HCMV-specific immune response in pregnant women with primary HCMV infection. Med Microbiol Immunol 211, 249–260 (2022). https://doi.org/10.1007/s00430-022-00747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-022-00747-4

Keywords

Navigation