Skip to main content
Log in

Expression Levels and Activity of Rat Liver Lactate Dehydrogenase Isoenzymes in Alloxan Diabetes

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

A significant decrease in the activity of liver lactate dehydrogenase (LDH, EC 1.1.1.27) associated with a decrease in the expression of the corresponding genes was found in rats with alloxan-induced diabetes. The decrease in the LDH activity was due to the cytoplasmic isoform of this enzyme. It was found that the level of ldha and ldhb gene transcripts in the liver of healthy rats was higher than in animals with alloxan diabetes. The ldha gene expression demonstrated almost 9-fold decrease, while a decrease in the ldhb gene expression was less pronounced (just 1.25-fold). Our data indicate an important role of LDH in the adaptive response of cellular metabolism in the development of type I diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mayfield, J., Am. Fam. Physician, 1998, vol. 58, no. 6, pp. 1355–1362.

    CAS  PubMed  Google Scholar 

  2. Kono, N., Kuwajima, M., and Tarui, S., Diabetes, 1981, vol. 30, no. 4, pp. 346–353.

    Article  CAS  Google Scholar 

  3. Mali, A.V., Bhise, S.S., Hegde, M.V., and Katyare, S.S., Indian J. Clin. Biochem., 2016, vol. 31, no. 3, pp. 321–325. https://doi.org/10.1007/s12291-015-0529-6

    Article  CAS  PubMed  Google Scholar 

  4. Eprintsev, A.T., Selivanova, N.V., and Moiseen-ko, A.V., Biomeditsinskaya Khimiya, 2021, vol. 67, no. 2, pp. 144–149. https://doi.org/10.18097/PBMC20216702144

    Article  CAS  Google Scholar 

  5. Al’ Dajni, S., Influence of an aqueous extract of European olive (Olea europaea) on the functioning of the enzymes of the glyoxylate cycle in rats under conditions of experimental diabetes, Extended Abstract of Cand. Sci. Dissertation, Voronezh State University, Voronezh, 2012.

  6. Avezov, K., Reznick, A.Z., and Aizenbud, D., Arch. Oral Biol., 2014, vol. 59, no. 2, pp. 142–148. https://doi.org/10.1016/j.archoralbio.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  7. Mali, A.V., Bhise, S.S., Katyare, S.S., and Hegde, M.V., Indian J. Clin. Biochem., 2018, vol. 33, no. 1, pp. 38–45. https://doi.org/10.1007/s12291-017-0637-6

    Article  CAS  PubMed  Google Scholar 

  8. Lenzen, S., Diabetologia, 2008, vol. 51, no. 2, pp. 216–226. https://doi.org/10.1007/s00125-007-0886-7

    Article  CAS  PubMed  Google Scholar 

  9. Pollock, N.L., Rai, M., Simond, K.S., Hesketh, S.J., Teo, A.C.K., Parmar, M., Sridhar, P., Collins, R., Lee, S.C., Stroud, Z.N., Bakker, S.E., Muench, S.P., Barton, C.H., Hurlbut, G., Roper, D.I., Smith, C.J.I., Knowles, T.J., Spickett, C.M., East, J.M., Postis, V., and Dafforn, T.R., Biochim. Biophys. Acta Biomembr., 2019, vol. 1861, no. 8, pp. 1437–1445. https://doi.org/10.1016/j.bbamem.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  10. Harper, S. and Speicher, D.W., Curr. Protoc. Protein Sci., 2019, 2019, vol. 96, no. 1, e87. https://doi.org/10.1002/cpps.87

  11. Jelski, W., Laniewska-Dunaj, M., Orywal, K., Kochanowicz, J., Rutkowski, R., and Szmitkowski, M., Neurochem. Res., 2014, vol. 39, pp. 2313–2318. https://doi.org/10.1007/s11064-014-1402-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eprintsev, A.T., Fedorin, D.N., Selivanova, N.V., Vu, T.L., Mahmud, A.S., and Popov, V.N., Russian Journal of Plant Physiology, 2012, vol. 59, no. 3, pp. 299–306.

    Article  CAS  Google Scholar 

  13. Moss, D., Harbison, S.A., and Saul, D.J., Int. J. Legal Med., 2003, vol. 117, pp. 340–349. https://doi.org/10.1007/s00414-003-0400-9

    Article  CAS  PubMed  Google Scholar 

  14. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, Th.L., BMC Bioinformatics, 2012, vol. 13, no. 1, 134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sievers, F. and Higgins, D.G., Curr. Protoc. Bioinform., 2014, vol. 48, no. 3.13, pp. 1–16. https://doi.org/10.1002/0471250953.bi0313s48

  16. Matveeva, S.A. and Matveeva, I.V., Evrazijskij Kardiologicheskij Zhurnal, 2016, vol. 3, pp. 102–103.

    Google Scholar 

  17. Dmour, H.H., Khreisat, E.F., Khreisat, A.F., Hasan, Sh.A., Atoom, O., and Alkhatib, A.J., Jordan. Med. Arch., 2020, vol. 74, no. 5, pp. 384–386. https://doi.org/10.5455/medarh.2020.74.384-386

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., and Han, Y., Cancer Med., 2018, vol. 7, no. 12, pp. 6124–6136. https://doi.org/10.1002/cam4.1820

    Article  PubMed  PubMed Central  Google Scholar 

  19. Elsner, M., Tiedge, M., Guldbakke, B., Munday, R., and Lenzen, S., Diabetologia, 2002, vol. 45, no. 11, pp. 1542–1549. https://doi.org/10.1007/s00125-002-0955-x

    Article  CAS  PubMed  Google Scholar 

  20. Hertz, L. and Dienel, G.A., Int. Rev. Neurobiol., 2002, vol. 51, pp. 1–102. https://doi.org/10.1016/s0074-7742(02)51003-5

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto, T. and Brooks, G.A., Med. Sci. Sports Exerc., 2008, vol. 40, no. 3, pp. 486–494. https://doi.org/10.1249/MSS.0b013e31815fcb04

    Article  CAS  PubMed  Google Scholar 

  22. Chandran, S., Yap, F., and Hussain, K., World J. Diabetes, 2014, vol. 5, no. 5, pp. 666–677. https://doi.org/10.4239/wjd.v5.i5.666

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ždralević, M., Brand, A., di Ianni, L., Dettmer, K., Reinders, J., Singer, K., Peter, K., Schnell, A., Bruss, C., Decking, S.M., Koehl, G., Felipe-Abrio, B., Durivault, J., Bayer, P., Evangelista, M., O’Brien, T., Oefner, P.J., Renner, K., Pouysségur, J., and Kreutz, M., J. Biol. Chem., 2018, vol. 293, no. 41, pp. 15947–15961. https://doi.org/10.1074/jbc.RA118.004180

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Evrogen for synthesis of the oligonucleotides used in the study.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-04-00296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Eprintsev.

Ethics declarations

The authors declare that they have no conflict of interest. All procedures of the experiment complied with the requirements of international rules for the humane treatment of animals, reflected in the sanitary rules for the selection and maintenance of experimental biological clinics (vivaria).

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eprintsev, A.T., Bondareva, I.R. & Selivanova, N.V. Expression Levels and Activity of Rat Liver Lactate Dehydrogenase Isoenzymes in Alloxan Diabetes. Biochem. Moscow Suppl. Ser. B 16, 210–215 (2022). https://doi.org/10.1134/S1990750822030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750822030052

Keywords:

Navigation