Skip to main content
Log in

Role of Germline Predisposition to Therapy-Related Myeloid Neoplasms

  • Germline Predisposition to Myeloid Neoplasms (M Patnaik, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Therapy-related myeloid neoplasms (t-MNs) are aggressive leukemias that develop following exposure to DNA-damaging agents. A subset of patients developing t-MN may have an inherited susceptibility to develop myeloid neoplasia. Herein, we review studies reporting t-MN and their association with a germline or inherited predisposition.

Recent Findings

Emerging evidence suggests that development of t-MN is the result of complex interactions including generation of somatic variants in hematopoietic stem cells and/or clonal selection pressure exerted by the DNA-damaging agents, and immune evasion on top of any inherited genetic susceptibility. Conventionally, alkylating agents, topoisomerase inhibitors, and radiation have been associated with t-MN. Recently, newer modalities including poly (ADP-ribose) polymerase inhibitors (PARPi) and peptide receptor radionucleotide therapy (PRRT) are associated with t-MN. At the same time, the role of pathogenic germline variants (PGVs) in genes such as BRCA1/2, BARD1, or TP53 on the risk of t-MN is being explored. Moreover, studies have shown that while cytotoxic therapy increases the risk of developing myeloid neoplasia, it may be exposing the vulnerability of an underlying germline predisposition.

Summary

t-MN remains a disease with poor prognosis. Studies are needed to better define an individual’s inherited neoplastic susceptibility which will help predict the risk of myeloid neoplasia in the future. Understanding the genes driving the inherited neoplastic susceptibility will lead to better patient- and cancer-specific management including choice of therapeutic regimen to prevent, or at least delay, development of myeloid neoplasia after treatment of a prior malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Stat Facts: Cancer of Any Site [Internet]. National Cancer Institute Surveillance, Epidemiology, and End Results Program. [cited 2022 May 5]. Available from: https://seer.cancer.gov/statfacts/html/all.html

  3. McNerney ME, Godley LA, le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;17(9):513–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Granfeldt Østgård LS, Medeiros BC, Sengeløv H, Nørgaard M, Andersen MK, Dufva IH, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33(31):3641–9.

    Article  PubMed  Google Scholar 

  5. Smith SM, le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  6. Radivoyevitch T, Sachs RK, Gale RP, Molenaar RJ, Brenner DJ, Hill BT, et al. Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation. Leukemia. 2016;30(2):285–94.

    Article  CAS  PubMed  Google Scholar 

  7. Schulz E, Valentin A, Ulz P, Beham-Schmid C, Lind K, Rupp V, et al. Germline mutations in the DNA damage response genes BRCA1, BRCA2, BARD1 and TP53 in patients with therapy related myeloid neoplasms. J Med Genet. 2012;49(7):422–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kayser S, Döhner K, Krauter J, Köhne CH, Horst HA, Held G, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137–45.

    Article  CAS  PubMed  Google Scholar 

  9. Hulegårdh E, Nilsson C, Lazarevic V, Garelius H, Antunovic P, Rangert Derolf Å, et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish Acute Leukemia Registry. Am J Hematol. 2015;90(3):208–14.

    Article  PubMed  Google Scholar 

  10. Higgins A, Shah MV. Genetic and genomic landscape of secondary and therapy-related acute myeloid leukemia. Genes (Basel). 2020;11(7):749.

    Article  CAS  PubMed  Google Scholar 

  11. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014;123(21):3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chhetri R, Sharplin K, Proudman W, Kutyna MM, Nayar S, Singhal D, et al. Hypomethylating therapy does not improve outcome of therapy-related myeloid neoplasm including TP53 mutated and complex karyotype subgroups. Blood. 2021;138(Supplement 1):3702–3702.

    Article  Google Scholar 

  14. Baranwal A, Chhetri R, Kok C, Alkhateeb HB, Mangaonkar A, Johnson BK, et al. Factors predicting survival following allogeneic stem cell transplant in patients with therapy-related myeloid neoplasms. Transplant Cell Ther. 2022;28(3):S137–8.

    Article  Google Scholar 

  15. Shah MV, Chhetri R, Dholakia R, Kok CH, Gangat N, Alkhateeb HB, et al. Outcomes following venetoclax‐based treatment in therapy‐related myeloid neoplasms. Am J Hematol. 2022;97(8):1013–1022.

  16. Fianchi L, Criscuolo M, Lunghi M, Gaidano G, Breccia M, Levis A, et al. Outcome of therapy-related myeloid neoplasms treated with azacitidine. J Hematol Oncol. 2012;5(1):44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Intern Med. 1969;71(4):747–52.

    Article  CAS  PubMed  Google Scholar 

  18. Furutani E, Shimamura A. Germline genetic predisposition to hematologic malignancy. J Clin Oncol. 2017;35(9):1018–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, et al. Analysis of 153 115 patients with hematological malignancies refines the spectrum of familial risk. Blood. 2019;134(12):960–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schrader KA, Cheng DT, Joseph V, Prasad M, Walsh M, Zehir A, et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol. 2016;2(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Singhal D, Hahn CN, Feurstein S, Wee LYA, Moma L, Kutyna MM, et al. Targeted gene panels identify a high frequency of pathogenic germline variants in patients diagnosed with a hematological malignancy and at least one other independent cancer. Leukemia. 2021;35(11):3245–56.

    Article  CAS  PubMed  Google Scholar 

  22. Churpek JE, Marquez R, Neistadt B, Claussen K, Lee MK, Churpek MM, et al. Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia. Cancer. 2016;122(2):304–11.

    Article  CAS  PubMed  Google Scholar 

  23. Voso MT, Fabiani E, Zang Z, Fianchi L, Falconi G, Padella A, et al. Fanconi anemia gene variants in therapy-related myeloid neoplasms. Blood Cancer J. 2015;5(7):e323–e323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin MG, Jacoby M, Shao J, Deych E, Graubert T, Walter MJ. BRCA1 and BRCA2 nucleotide variants in young women with therapy related acute myeloid leukemia. Blood. 2009;114(22):1102–1102.

    Article  Google Scholar 

  25. Sébert M, Passet M, Raimbault A, Rahmé R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134(17):1441–4.

    Article  PubMed  Google Scholar 

  26. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27(5):658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baliakas P, Tesi B, Wartiovaara-Kautto U, Stray-Pedersen A, Friis LS, Dybedal I, et al. Nordic guidelines for germline predisposition to myeloid neoplasms in adults: recommendations for genetic diagnosis, clinical management and follow-up. Hemasphere. 2019;3(6):e321.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kraft IL, Godley LA. Identifying potential germline variants from sequencing hematopoietic malignancies. Blood. 2020;136(22):2498–506.

    Article  CAS  PubMed  Google Scholar 

  29. Padron E, Ball MC, Teer JK, Painter JS, Yoder SJ, Zhang C, et al. Germ line tissues for optimal detection of somatic variants in myelodysplastic syndromes. Blood. 2018;131(21):2402–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang F, Long N, Anekpuritanang T, Bottomly D, Savage JC, Lee T, et al. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML. Blood. 2022;139(8):1208–21.

    Article  CAS  PubMed  Google Scholar 

  31. Zebisch A, Lal R, Müller M, Lind K, Kashofer K, Girschikofsky M, et al. Acute myeloid leukemia with TP53 germ line mutations. Blood. 2016;128(18):2270–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Link DC. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA. 2011;305(15):1568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res. 2004;10(8):2675–80.

    Article  CAS  PubMed  Google Scholar 

  34. Felix CA, Hosler MR, Provisor D, Salhany K, Sexsmith EA, Slater DJ, et al. The p53 gene in pediatric therapy-related leukemia and myelodysplasia. Blood. 1996;87(10):4376–81.

    Article  CAS  PubMed  Google Scholar 

  35. Kutyna MM, Kok CH, Paton S, Cakouros D, Arthur A, Hughes TP, et al. Distinct senescent bone marrow microenvironment in therapy-related myeloid neoplasms. Blood. 2021;138(Supplement 1):2585–2585.

    Article  Google Scholar 

  36. Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586(7831):763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the Modern Era. JAMA Oncol. 2019;5(3):318–25.

    Article  PubMed  Google Scholar 

  38. Verkooijen HM, Fioretta G, Rapiti E, Vlastos G, Neyroud-Caspar I, Chappuis PO, et al. Family history of breast or ovarian cancer modifies the risk of secondary leukemia after breast cancer: results from a population-based study. Int J Cancer. 2007;122(5):1114–7.

    Article  Google Scholar 

  39. Martin MG, Welch JS, Luo J, Ellis MJ, Graubert TA, Walter MJ. Therapy related acute myeloid leukemia in breast cancer survivors, a population-based study. Breast Cancer Res Treat. 2009;118(3):593–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Choong J, Kutyna MM, Chhetri R, Moore S, Hiwase D. Frequency of chromosomal translocations are significantly higher in therapy related myeloid neoplasm as compared to primary MDS. Blood. 2021;138(Supplement 1):1532–1532.

    Article  Google Scholar 

  41. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang K-L, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, et al. Pathogenic germline variants in 10,389 adult cancers. Cell. 2018;173(2):355-370.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hahn CN, Feurstein SK, Singhal D, Kutyna MM, Chhetri R, Wee A, et al. Unexpected high frequency of pathogenic germline variants in older adults with primary myelodysplastic syndrome. Blood. 2021;138(Supplement 1):2594–2594.

    Article  Google Scholar 

  44. Tinat J, Bougeard G, Baert-Desurmont S, Vasseur S, Martin C, Bouvignies E, et al. 2009 Version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27(26):e108–9.

    Article  PubMed  Google Scholar 

  45. Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017. J Natl Compr Cancer Netw. 2017;15(1):9–20.

    Article  CAS  Google Scholar 

  46. Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood. 2020;136(1):24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewinsohn M, Brown AL, Weinel LM, Phung C, Rafidi G, Lee MK, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127(8):1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baranwal A, Al-Kali A, Foran J, Viswanatha DS, He R, Patnaik MM, et al. Allogeneic stem cell transplant outcomes in patients with DDX41 mutated myeloid malignancies. Transplant Cell Ther. 2022;28(3):S126–7.

    Article  Google Scholar 

  49. Tawana K, Wang J, Renneville A, Bödör C, Hills R, Loveday C, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126(10):1214–23.

    Article  CAS  PubMed  Google Scholar 

  50. Boada M, Catalan AI, Ottati C, Bentancour F, Lens D, Guillermo C, et al. Germline CEBPA mutation in familial acute myeloid leukemia. Hematol Rep. 2021;13(3):9114.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cavé H, Caye A, Strullu M, Aladjidi N, Vignal C, Ferster A, et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur J Med Genet. 2016;59(3):173–8.

    Article  PubMed  Google Scholar 

  52. Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Freedman MH, Bonilla MA, Fier C, Bolyard AA, Scarlata D, Boxer LA, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood. 2000;96(2):429–36.

    CAS  PubMed  Google Scholar 

  54. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome–related myeloid disorders. Nat Genet. 2013;45(11):1293–9.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001;7(2):249–62.

    Article  CAS  PubMed  Google Scholar 

  56. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, de Die-Smulders C, et al. Biallelic inactivation of BRCA2 in Fanconi anemia (1979). Science. 2002;297(5581):606–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;10:735–48.

    Article  Google Scholar 

  58. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.

    Article  CAS  PubMed  Google Scholar 

  59. Alter BP. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014;27(3–4):214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Risch HA, McLaughlin JR, Cole DEC, Rosen B, Bradley L, Kwan E, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001;68(3):700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mirza MM, Mccular B, Martin MG. Therapy related myeloid and lymphoid neoplasms in BRCA mutated breast and ovarian cancer patients. Blood. 2016;128(22):5115–5115.

    Article  Google Scholar 

  62. Mansfield AS, Lewis MA, Patnaik MM, Lindor NM, Goetz MP, Litzow MR. No association of BRCA mutations with therapy-related myelodysplastic syndrome or acute myeloid leukemia in patients treated for breast or ovarian cancer. Blood. 2011;118(21):4259–4259.

    Article  Google Scholar 

  63. Melichar B, Laco J, Fridrichová P, Šimkovič M, Papajík T, Foretová L. Therapy-related myeloid neoplasms in epithelial ovarian cancer patients carrying BRCA1 mutation: report of two cases. Acta Oncol. 2012;51(1):136–8.

    Article  CAS  PubMed  Google Scholar 

  64. Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5(4):387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res. 2015;21(19):4257–61.

    Article  CAS  PubMed  Google Scholar 

  66. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.

    Article  CAS  PubMed  Google Scholar 

  67. Morice PM, Leary A, Dolladille C, Chrétien B, Poulain L, González-Martín A, et al. Myelodysplastic syndrome and acute myeloid leukaemia in patients treated with PARP inhibitors: a safety meta-analysis of randomised controlled trials and a retrospective study of the WHO pharmacovigilance database. Lancet Haematol. 2021;8(2):e122–34.

    Article  PubMed  Google Scholar 

  68. Martin JE, Khalife-Hachem S, Grinda T, Kfoury M, Garciaz S, Pasquier F, et al. Therapy-related myeloid neoplasms following treatment with PARP inhibitors: new molecular insights. Ann Oncol. 2021;32(8):1046–8.

    Article  CAS  PubMed  Google Scholar 

  69. Kwan TT, Oza AM, Tinker AV, Ray-Coquard I, Oaknin A, Aghajanian C, et al. Preexisting TP53-variant clonal hematopoiesis and risk of secondary myeloid neoplasms in patients with high-grade ovarian cancer treated with rucaparib. JAMA Oncol. 2021;7(12):1772–81.

    Article  PubMed  Google Scholar 

  70. Foulds L. The experimental study of tumor progression: a review. Cancer Res. 1954;14(5):327–39.

    CAS  PubMed  Google Scholar 

  71. Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255(5505):197–200.

    Article  CAS  PubMed  Google Scholar 

  72. Nowell PC. Chromosomal and molecular clues to tumor progression. Semin Oncol. 1989;16(2):116–27.

    CAS  PubMed  Google Scholar 

  73. Weber-Lassalle K, Ernst C, Reuss A, Möllenhoff K, Baumann K, Jackisch C, et al. Clonal hematopoiesis–associated gene mutations in a clinical cohort of 448 patients with ovarian cancer. JNCI J Natl Cancer Inst. 2022;114(4):565–70.

    Article  PubMed  Google Scholar 

  74. Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. 2020;52(11):1219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988;78(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  76. Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999;401(6750):301–4.

    Article  CAS  PubMed  Google Scholar 

  77. Sanders MA, Chew E, Flensburg C, Zeilemaker A, Miller SE, al Hinai AS, et al. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood. 2018;132(14):1526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rodrigues M, Mobuchon L, Houy A, Fiévet A, Gardrat S, Barnhill RL, et al. Outlier response to anti-PD1 in uveal melanoma reveals germline MBD4 mutations in hypermutated tumors. Nat Commun. 2018;9(1):1866.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Park JY, Shigenaga MK, Ames BN. Induction of cytochrome P4501A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin or indolo(3,2-b)carbazole is associated with oxidative DNA damage. Proc Natl Acad Sci. 1996;93(6):2322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666–75.

    Article  CAS  PubMed  Google Scholar 

  81. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45(1):51–88.

    Article  CAS  PubMed  Google Scholar 

  82. McFadyen MCE, Melvin WT, Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther. 2004;3(3):363–71.

    Article  CAS  PubMed  Google Scholar 

  83. Felix CA, Walker AH, Lange BJ, Williams TM, Winick NJ, Cheung NK, et al. Association of CYP 3 A 4 genotype with treatment-related leukemia. Proc Natl Acad Sci. 1998;95(22):13176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rund D, Krichevsky S, Bar-Cohen S, Goldschmidt N, Kedmi M, Malik E, et al. Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia. 2005;19(11):1919–28.

    Article  CAS  PubMed  Google Scholar 

  85. Naoe T, Takeyama K, Yokozawa T, Kiyoi H, Seto M, Uike N, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res. 2000;6(10):4091–5.

    CAS  PubMed  Google Scholar 

  86. Larson RA, Wang Y, Banerjee M, Wiemels J, Hartford C, le Beau MM, et al. Prevalence of the inactivating 609C→T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood. 1999;94(2):803–7.

    Article  CAS  PubMed  Google Scholar 

  87. Fern L, Pallis M, Ian Carter G, Seedhouse C, Russell N, Byrne J. Clonal haemopoiesis may occur after conventional chemotherapy and is associated with accelerated telomere shortening and defects in the NQO1 pathway; possible mechanisms leading to an increased risk of t-AML/MDS. Br J Haematol. 2004;126(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  88. Voso MT, D’Alo’ F, Putzulu R, Mele L, Scardocci A, Chiusolo P, et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood. 2002;100(8):2703–7.

    Article  CAS  PubMed  Google Scholar 

  89. Sasai Y, Horiike S, Misawa S, Kaneko H, Kobayashi M, Fujii H, et al. Genotype of glutathione S-transferase and other genetic configurations in myelodysplasia. Leuk Res. 1999;23(11):975–81.

    Article  CAS  PubMed  Google Scholar 

  90. Haase D, Binder C, Bünger J, Fonatsch C, Streubel B, Schnittger S, et al. Increased risk for therapy-associated hematologic malignancies in patients with carcinoma of the breast and combined homozygous gene deletions of glutathione transferases M1 and T1. Leuk Res. 2002;26(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  91. Naoe T, Tagawa Y, Kiyoi H, Kodera Y, Miyawaki S, Asou N, et al. Prognostic significance of the null genotype of glutathione S-transferase-T1 in patients with acute myeloid leukemia: increased early death after chemotherapy. Leukemia. 2002;16(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  92. Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci. 2001;98(20):11592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alkhateeb HB, Nanaa A, Viswanatha D, Foran JM, Badar T, Sproat L, et al. Genetic features and clinical outcomes of patients with isolated and comutated DDX41-mutated myeloid neoplasms. Blood Advances [Internet]. 2022 Jan 25;6(2):528–32. Available from: https://ashpublications.org/bloodadvances/article/6/2/528/477281/Genetic-features-and-clinical-outcomes-of-patients

  94. Duployez N, Largeaud L, Duchmann M, Kim R, Rieunier J, Lambert J, et al. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study. Blood. 2022;140(7):756–768.

  95. Simkins A, Bannon SA, Khoury JD, Kanagal-Shamanna R, Foglesong JS, Alvarado Y, et al. Diamond-Blackfan anemia predisposing to myelodysplastic syndrome in early adulthood. JCO Precis Oncol. 2017;1:1–5.

    PubMed  Google Scholar 

  96. Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA. 2010;304(12):1358–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cioc AM, Wagner JE, MacMillan ML, DeFor T, Hirsch B. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with Fanconi anemia. Am J Clin Pathol. 2010;133(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  98. Vlachos A, Rosenberg PS, Atsidaftos E, Kang J, Onel K, Sharaf RN, et al. Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood. 2018;132(20):2205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Quentin S, Cuccuini W, Ceccaldi R, Nibourel O, Pondarre C, Pagès MP, et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood. 2011;117(15):e161–70.

    Article  CAS  PubMed  Google Scholar 

  100. Bonfim C. Special pre- and posttransplant considerations in inherited bone marrow failure and hematopoietic malignancy predisposition syndromes. Hematology. 2020;2020(1):107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Swain SM, Jeong JH, Geyer CE, Costantino JP, Pajon ER, Fehrenbacher L, et al. Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. N Engl J Med. 2010;362(22):2053–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sparano JA, Wang M, Martino S, Jones V, Perez EA, Saphner T, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358(16):1663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anampa J, Makower D, Sparano JA. Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med. 2015;13(1):195.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2017;390(10106):1949–61.

    Article  CAS  Google Scholar 

  105. Banerjee S, Moore KN, Colombo N, Scambia G, Kim BG, Oaknin A, et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22(12):1721–31.

    Article  CAS  PubMed  Google Scholar 

  106. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64.

    Article  CAS  PubMed  Google Scholar 

  107. Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(9):1274–84.

    Article  CAS  PubMed  Google Scholar 

  108. Loibl S, O’Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497–509.

    Article  CAS  PubMed  Google Scholar 

  109. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379(26):2495–505.

    Article  CAS  PubMed  Google Scholar 

  110. Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M, et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med. 2019;381(25):2403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. González-Martín A, Pothuri B, Vergote I, DePont CR, Graybill W, Mirza MR, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391–402.

    Article  PubMed  Google Scholar 

  112. Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28.

    Article  CAS  PubMed  Google Scholar 

  113. Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Monika Kutyna (University of Adelaide) for assistance with generating Fig. 1. Figures 2 and 3 were created using Biorender.com.

Funding

MVS was supported by Leukemia Research Foundation New Investigator Award and Eagles 5th District Cancer Telethon Funds for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mithun Vinod Shah or Devendra K. Hiwase.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Germline Predisposition to Myeloid Neoplasms

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranwal, A., Hahn, C.N., Shah, M.V. et al. Role of Germline Predisposition to Therapy-Related Myeloid Neoplasms. Curr Hematol Malig Rep 17, 254–265 (2022). https://doi.org/10.1007/s11899-022-00676-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00676-2

Keywords

Navigation