Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 19, 2022

The cluster structure of crystalline phases according to TGA/DTA and XPS data in isodimorphic substitution series [Cu x Ni(1−x){N(CH2PO3)3}]Na4·nH2O (x = 0 … 1)

  • Feodor F. Chausov EMAIL logo , Nikita E. Suksin , Aleksandr V. Kholzakov , Natalya V. Lomova , Irina S. Kazantseva and Dmitry S. Rybin

Abstract

The cluster structure, thermochemical behavior, and some mechanisms of thermal decomposition of the crystalline products in the isodimorphic substitution series Cu x Ni(1−x)NTP (x = 0 … 1) have been studied by simultaneous the thermal gravimetric analysis and differential thermal analysis (TGA/DTA) and X-ray photoelectron spectroscopy (XPS). The complexes NiNTP and Cu1/8Ni7/8NTP with a monoclinic crystal structure are the most thermo-stable and characterized by one-step decomposition at 400–440 °C with the formation of metal phosphides and phosphates. The complexes Cu3/8Ni5/8NTP–Cu3/4Ni1/4NTP with the triclinic crystal lattice and the trigonal-bipyramidal coordination of metal atoms decompose in two steps. Firstly, the formation of a heteroligand complex with imino-bis-methylenephosphonic and methylphosphonic acids takes place at 245 °C. Secondly, the complex decomposes at 270–380 °C. The monometallic complex CuNTP decomposes almost completely at 280–300 °C.


Corresponding author: Feodor F. Chausov, Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences, 34, T. Baramzina St., Izhevsk, 426063, Russian Federation, E-mail:

Funding source: Ministry of Science and Higher Education of the Russian Federation

Award Identifier / Grant number: projects 121030100002-0 and 121030100003-7

Acknowledgments

Studies were performed using equipment of Core shared research facilities “Center of physical and physical-chemical methods of analysis, investigations of properties and characteristics of surface, nanostructures, materials and products” of UdmFRC UB RAS.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Authors acknowledge financial support from Ministry of Science and Higher Education of the Russian Federation (projects 121030100002-0 and 121030100003-7).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chausov, F. F., Lomova, N. V., Somov, N. V., Kazantseva, I. S., Kholzakov, A. V., Sapozhnikov, G. V. Zakirova, R. M. Competitive formation of crystalline phases and its structural properties within the system [CuxNi(1−x){N(CH2PO3)3}]Na4·nH2O (x = 0…1). J. Cryst. Growth 2019, 524, 125187. https://doi.org/10.1016/j.jcrysgro.2019.1251871.Search in Google Scholar

2. Somov, N. V., Chausov, F. F., Lomova, N. V., Vorob’yev, V. L., Kazantseva, I. S., Sapozhnikov, G. V., Zakirova, R. M. The crystal-chemical features of phases and the nature of the coordination bond in the system [CuxNi(1−x){N(CH2PO3)3}]Na4·nH2O (x = 0–1). Crystallogr. Rep. 2020, 65, 726–739. https://doi.org/10.1134/S1063774520050211.Search in Google Scholar

3. Somov, N. V., Chausov, F. F. Structure of complexes of nitrilo tris methylene phosphonic acid with copper, [CuN(CH2PO3)3(H2O)3] and Na4[CuN(CH2PO3)3]2·19H2O, as bactericides and inhibitors of scaling and corrosion. Crystallogr. Rep. 2015, 60, 210–216. https://doi.org/10.1134/S1063774515010228.Search in Google Scholar

4. Demadis, K. D. Chemistry of organophosphonate scale growth inhibitors: 4. stability of amino-tris-methylene phosphonate towards oxidizing biocides. Phosphorus Sulfur Silicon Relat. Elem. 2006, 181, 167–176. https://doi.org/10.1080/104265090969504.Search in Google Scholar

5. Demadis, K. D., Ketsetzi, A. Degradation of water treatment chemical additives in the presence of oxidizing biocides: “collateral damages” in industrial water systems. Separ. Sci. Technol. 2007, 42, 1639–1649. https://doi.org/10.1080/01496390701290532.Search in Google Scholar

6. Kazantseva, I. S., Chausov, F. F., Fedotova, I. V., Sapozhnikov, G. V. Complexometric determination of the content of copper and nickel in the joint presence in mixed complexes with nitrilotris-methylenephosphonic acid. Khimicheskaya fizika i mezoskopiya 2019, 21, 589–597.10.15350/17270529.2019.4.62Search in Google Scholar

7. Trapeznikov, V. A., Shabanova, I. N., Kholzakov, A. V., Ponomaryov, A. G. Studies of transition metal melts by X-ray electron magnetic spectrometer. J. Electron. Spectrosc. Relat. Phenom. 2004, 137–140, 383–385. https://doi.org/10.1016/j.elspec.2004.02.115.Search in Google Scholar

8. Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972, 5, 4709–4714. https://doi.org/10.1103/physrevb.5.4709.Search in Google Scholar

9. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. https://doi.org/10.1107/S0021889810030499.Search in Google Scholar

10. Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., Liu, C. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. 2015, 3, 1656–1665. https://doi.org/10.1039/c4ta04867a.Search in Google Scholar

11. Mirghni, A. A., Madito, M. J., Oyedotun, K. O., Masikhwa, T. M., Ndiaye, N. M., Ray, S. J., Manyala, N. A high energy density asymmetric supercapacitor utilizing a nickel phosphate/graphene foam composite as the cathode and carbonized iron cations adsorbed onto polyaniline as the anode. RSC Adv. 2018, 8, 11608–11621. https://doi.org/10.1039/c7ra12028a.Search in Google Scholar PubMed PubMed Central

12. La Iglesia, A. Estimating the thermodynamic properties of phosphate minerals at high and low temperature from the sum of constituent units. Estud. Geol. 2009, 65, 109–119. https://doi.org/10.3989/egeol.39849.060.Search in Google Scholar

13. Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C., McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. https://doi.org/10.1016/j.susc.2006.01.041.Search in Google Scholar

14. Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. https://doi.org/10.1002/sia.6239.Search in Google Scholar

15. Biesinger, M. C., Lau, L. W. M., Gerson, A. R., Smart, R. St. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. https://doi.org/10.1016/j.apsusc.2010.07.086.Search in Google Scholar

16. Lomova, N. V., Shabanova, I. N. The study of the electronic structure and magnetic properties of invar alloys based on transition metals. J. Electron. Spectrosc. Relat. Phenom. 2004, 137–140, 511–517. https://doi.org/10.1016/j.elspec.2004.02.166.Search in Google Scholar

17. Stevens, J. S., Byard, S. J., Muryn, C. A., Schroeder, S. L. M. Identification of protonation state by XPS, solid-state NMR, and DFT: characterization of the nature of a new theophylline complex by experimental and computational methods. J. Phys. Chem. B 2010, 114, 13961–13969. https://doi.org/10.1021/jp106465u.Search in Google Scholar PubMed

18. Desimoni, E., Brunetti, B., Desimoni, E., Brunetti, B. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 2015, 3, 70–117. https://doi.org/10.3390/chemosensors3020070.Search in Google Scholar

19. Collin, J., Collin, J. Le comportement de quelques types de molécules azotées sous l’effet d’un bombardement électronique. Bull. Soc. Chim. Belg. 1953, 62, 411–427. https://doi.org/10.1002/bscb.19530620707.Search in Google Scholar

20. Wada, Y., Kiser, R. W., Wada, Y., Kiser, R. W. A mass spectrometric study of some alkyl-substituted phosphines. J. Phys. Chem. 1964, 68, 2290–2295. https://doi.org/10.1021/j100790a044.Search in Google Scholar

21. Cabeza, A., Bruque, S., Guagliardi, A., Aranda, M. A. G. Two new organo-inorganic hybrid compounds: nitrilophosphonates of aluminum and copper. J. Solid State Chem. 2001, 160, 278–286. https://doi.org/10.1006/jssc.2001.9246.Search in Google Scholar

22. Cabeza, A., Ouyang, X., Sharma, C. V. K., Aranda, M. A. G., Bruque, S., Clearfield, A. Complexes formed between nitrilotris(methylenephosphonic acid) and m2+ transition metals: isostructural organic−inorganic hybrids. Inorg. Chem. 2002, 41, 2325–2333. https://doi.org/10.1021/ic0110373.Search in Google Scholar PubMed

Received: 2022-05-31
Accepted: 2022-08-05
Published Online: 2022-08-19
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0034/html
Scroll to top button