Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 2, 2022

Multiple strongly coupled antiferromagnetic spin S = 1/2 dimers in liroconite Cu2Al(As,P)O4(OH)4·4H2O

  • Reinhard K. Kremer EMAIL logo , Sebastian Bette , Eva Brücher , Jürgen Nuss , Armin Schulz , Myung-Hwan Whangbo and Hyun-Joo Koo

Abstract

We report on the magneto-structural properties of the rare copper aluminum hydroxo-arsenate mineral liroconite with chemical composition Cu2AlAs1−x P x O4(OH)4·4H2O (x ≈ 0.2). In order to characterize the natural mineral sample chemical analyses, X-ray single crystal and powder diffraction, heat capacity and crystal water desorption, anisotropic thermal expansion and Raman scattering and magnetic susceptibility investigations have been carried out. The magnetic properties are well described by two discrete oxygen bridged Cu2+ spin S = 1/2 dimers with antiferromagnetic spin exchange ranging between −320 K and −136 K, depending on to which group-15 five-valent cation, As5+ or P5+, the dimer bridging oxygen atoms coordinate to. Accordingly the temperature dependence of the magnetic susceptibilities can be well fitted to a sum of two Bleaney–Bowers type spin S = 1/2 dimer susceptibilities suggesting that the dimers show negligible mixed coordination to (AsO4)3−/(PO4)3− tetrahedra. DFT + U calculation confirm the ratio of the spin exchange parameters of the (AsO4)3− or (PO4)3− coordinated Cu2+ – Cu2+ dimers. Inter dimer spin exchange is about two orders of magnitude smaller than intra dimer exchange.


Corresponding author: Reinhard K. Kremer, Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany, E-mail:

Acknowledgments

We thank V. Duppel for the careful photographical work and the microprobe EDX analyses.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sachdev, S. Quantum Phase Transitions; University Press: Cambridge, 1999.10.1017/CBO9780511622540Search in Google Scholar

2. Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208; https://doi.org/10.1038/nature08917.Search in Google Scholar PubMed

3. Lacroix, C., Mendels, P., Mila, F. F. Introduction to Frustrated Magnetism; Springer: Heidelberg, 2011.10.1007/978-3-642-10589-0Search in Google Scholar

4. Savary, L., Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 2017, 80, 016502-1−016502-55; https://doi.org/10.1088/0034-4885/80/1/016502.Search in Google Scholar PubMed

5. Eby, R. K., Hawthorne, F. C. Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallogr. 1993, B49, 28–56; https://doi.org/10.1107/s0108768192007274.Search in Google Scholar

6. Inosov, D. S. Quantum magnetism in minerals. Adv. Phys. 2018, 67, 149–252; https://doi.org/10.1080/00018732.2018.1571986.Search in Google Scholar

7. Lebernegg, S., Tsirlin, A. A., Janson, O., Rosner, H. Nearly compensated exchange in the dimer compound callaghanite Cu2Mg2(CO3)(OH)6·2H2O. Phys. Rev. B 2014, 89, 165127-1–165127-11.10.1103/PhysRevB.89.165127Search in Google Scholar

8. Whangbo, M. H., Koo, H. J., Kremer, R. K. Spin exchanges between transition-metal ions governed by the ligand p-orbitals in their magnetic orbitals. Molecules 2021, 26, 531–557; https://doi.org/10.3390/molecules26030531.Search in Google Scholar PubMed PubMed Central

9. Bleaney, B., Bowers, K. D. Anomalous paramagnetism of copper acetate. Proc. R. Soc. A 1952, 214, 451–462.10.1103/RevModPhys.25.161Search in Google Scholar

10. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198; https://doi.org/10.1126/science.235.4793.1196.Search in Google Scholar PubMed

11. Rokhsar, D. S., Kivelson, S. A. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 1988, 61, 2376–2379; https://doi.org/10.1103/physrevlett.61.2376.Search in Google Scholar PubMed

12. Rüegg, C., McMorrow, D. F., Normand, B., Rønnow, H. M., Sebastian, S. E., Fisher, I. R., Batista, C. D., Gvasaliya, S. N., Niedermayer, C., Stahn, J. Multiple magnon modes and consequences for the bose-einstein condensed phase in BaCuSi2O6. Phys. Rev. Lett. 2007, 98, 017202-1–017202-4.10.1103/PhysRevLett.98.017202Search in Google Scholar

13. Giamarchi, T., Rüegg, C., Tchernyshyov, O. Bose–einstein condensation in magnetic insulators. Nat. Phys. 2008, 4, 198–204; https://doi.org/10.1038/nphys893.Search in Google Scholar

14. Timco, G. A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R. J., Muryn, C. A., McInnes, E. J. L., Ghirri, A., Candini, A., Santini, P., Amoretti, G., Affronte, M., Winpenny, R. E. P. Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 2009, 4, 17–179; https://doi.org/10.1038/nnano.2008.404.Search in Google Scholar PubMed

15. Kuroe, H., Takami, N., Niwa, N., Sekine, T., Matsumoto, M., Yamada, F., Tanaka, H., Takemura, K. Longitudinal magnetic excitation in KCuCl3 studied by Raman scattering under hydrostatic pressures. J. Phys. Conf. Ser. 2012, 400, 032042-1–032042-4; https://doi.org/10.1088/1742-6596/400/3/032042.Search in Google Scholar

16. Matsumoto, M., Sakurai, T., Hirao, Y., Ohta, H., Uwatoko, Y., Tanaka, H. First ESR detection of Higgs amplitude mode and analysis with extended spin-wave theory in dimer system KCuCl3. Appl. Magn. Reson. 2021, 52, 523–564; https://doi.org/10.1007/s00723-020-01302-1https://doi.org/10.1007/s00723-020-01302-1.Search in Google Scholar

17. Goodenough, J. B. Magnetism and the Chemical Bond; John Wiley & Sons: New York London, 1963.Search in Google Scholar

18. Hay, P. J., Thibeault, J. C., Hoffmann, R. Orbital interactions in metal dimer complexes. J. Am. Chem. Soc. 1975, 97, 4884–4899; https://doi.org/10.1021/ja00850a018.Search in Google Scholar

19. Bencini, A., Gatteschi, D. D. EPR of Exchange Coupled Systems; Springer-Verlag: Berlin Heidelberg, 1990; p. 12. [Kolesova1968].Search in Google Scholar

20. Kolesova, R. V., Fesenko, E. G. Determination of the crystal structure of liroconite Cu2Al(AsO4) (OH)4 · 4H2O. Sov. Phys. Crystallogr. 2020, 13, 324–328.Search in Google Scholar

21. Burns, P. C., Eby, R. K., Hawthorne, F. C. F. Refinement of the structure of liroconite, a heteropolyhedral framework oxysalt mineral. Acta Crystallogr. 1991, C47, 916–919; https://doi.org/10.1107/s0108270190010939.Search in Google Scholar

22. Plumhoff, A. M., Plášil, J., Dachs, E., Benisek, A., Sejkora, J., Števko, M., Rumsey, M. S., Majzlan, J. Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) · 0.5 H2O], geminite [Cu(AsO3OH) (H2O)] and liroconite [Cu2Al(AsO4) (OH)4 · 4H2O]. Eur. J. Mineral 2020, 32, 285–304; https://doi.org/10.5194/ejm-32-285-2020.Search in Google Scholar

23. Mikroanalytisches Labor Pascher: An der Pulvermühle 1, 53424 Remagen, Germany.Search in Google Scholar

24. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69; https://doi.org/10.1016/0921-4526(93)90108-i.Search in Google Scholar

25. Bruker, S, Version 2008/3 Bruker AXS Inc.: Madison, WI, 2008.Search in Google Scholar

26. Sheldrick, G. M. Sadabs-Bruker AXS area detector scaling and absorption, version 2008/1; University of Göttingen: Göttingen, Germany, 2008.Search in Google Scholar

27. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. A 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

28. Coelho, A. A. Whole powder pattern modelling macros for Topas. J. Appl. Crystallogr. 2018, 51, 210–218; https://doi.org/10.1107/s1600576718000183.Search in Google Scholar

29. Cheary, R. W., Coelho, A. A., Cline, J. P. Fundamental parameters lineprofile fitting in laboratory diffractometers. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 1–25; https://doi.org/10.6028/jres.109.002.Search in Google Scholar PubMed PubMed Central

30. Färber G. Mineralien: Bornsche Str.9, 39326 Samswegen, Germany.Search in Google Scholar

31. Rietveld, H. M. Profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/s0021889869006558.Search in Google Scholar

32. Cliffe, M. J., Goodwin, A. L. Pascal: a principal axis strain calculator for thermal expansion and compressibility determination. J. Appl. Crystallogr. 2012, 45, 1321–1329; https://doi.org/10.1107/s0021889812043026.Search in Google Scholar

33. Bette, S., Eggert, G., Emmerling, S., Etter, M., Schleid, T., Dinnebier, R. E. Crystal structure, polymorphism, and anisotropic thermal expansion of α-Ca(CH3COO)2. Cryst. Growth Des. 2020, 20, 5346–5355; https://doi.org/10.1021/acs.cgd.0c00563.Search in Google Scholar

34. Makreski, P., Jovanovski, S., Pejov, L., Petruševski, G., Ugarkovi, S., Jovanovski, G. Theoretical and experimental study of the vibrational spectra of liroconite, Cu2Al(AsO4)(OH)4·4H2O and bayldonite, Cu3Pb[O(AsO3OH)2(OH)2]. Vib. Spectrosc. 2015, 79, 36–43; https://doi.org/10.1016/j.vibspec.2015.04.006.Search in Google Scholar

35. Myneni, S. C. B., Traina, S. J., Waychunas, G. A., Logan, T. J. Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochem. Cosmochim. Acta 1998, 62, 3285–3300; https://doi.org/10.1016/s0016-7037(98)00222-1.Search in Google Scholar

36. Frost, R. L., Weier, M. L., Martens, W., Duong, L. Identification of mixite minerals – an SEM and Raman spectroscopic analysis. Mineral. Mag. 2005, 69, 169–177; https://doi.org/10.1180/0026461056920244.Search in Google Scholar

37. Frost, R. L., McKinnon, A. R., Williams, P. A., Erickson, K. A., Weier, M. L., Leverett, P. Studies of natural and synthetic agardites. N. Jb. Miner. Abh. 2005, 181, 11–19; https://doi.org/10.1127/0077-7757/2005/0181-0006.Search in Google Scholar

38. Frost, R. L., Čejka, J., Sejkora, J., Plášil, J., Bahfenne, S., Palmer, S. J. Raman microscopy of the mixite mineral BiCu6(AsO4)3(OH)6·3H2O from the Czech Republic. J. Raman Spectrosc. 2010, 41, 566–570; https://doi.org/10.1002/jrs.2454.Search in Google Scholar

39. Čejka, J., Sejkora, J., Plášil, J., Keefe, E. C., Bahfenne, S., Palmer, S. J., Frost, R. L. A Raman and infrared spectroscopic study of Ca2+ dominant members of the mixite group from the Czech Republic. J. Raman Spectrosc. 2011, 412, 1154–1159; https://doi.org/10.1002/jrs.2817.Search in Google Scholar

40. Golubev, A., Brücher, E., Schulz, A., Kremer, R. K., Schmidt, F. X., Gordon, E. E., Whangbo, M. H. Low-dimensional magnetic properties of natural and synthetic mixite (Bi, Ca)Cu6(OH)6(AsO4)3·nH2O (n ≈ 3) and goudeyite YCu6(OH)6(AsO4)3·nH2O (n ≈ 3). Z. Anorg. Allg. Chem. 2018, 644, 1782–1790; https://doi.org/10.1002/zaac.201800344.Search in Google Scholar

41. Miletich, R., Zemann, J., Nowak, M. Reversible hydration in synthetic mixite, BiCu6(OH)6(AsO4)3·nH2O (n≤3): hydration kinetics and crystal chemistry. Phys. Chem. Miner. 1997, 24, 411–422; https://doi.org/10.1007/s002690050055.Search in Google Scholar

42. Frost, R. L., Williams, P. A., Martens, W., Kloprogge, J. T., Leverett, P. Raman spectroscopy of the basic copper phosphate minerals cornetite, libethenite, pseudomalachite, reichenbachite and ludjibaite. J. Raman Spectrosc. 2002, 33, 260–263; https://doi.org/10.1002/jrs.850.Search in Google Scholar

43. Kharbish, S., Andráš, P., Luptáková, J., Milovská, S. Raman spectra of oriented and non-oriented Cu hydroxy-phosphate minerals: libethenite, cornetite, pseudomalachite, reichenbachite and ludjibaite, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 152–163; https://doi.org/10.1016/j.saa.2014.01.144.Search in Google Scholar PubMed

44. Popović, L., de Waal, D., Boeyens, J. C. A. Correlation between Raman wavenumbers and P – O bond length in crystalline anorganic phosphates. J. Raman Spectrosc. 2005, 36, 2–11.10.1002/jrs.1253Search in Google Scholar

45. Kresse, G., Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50; https://doi.org/10.1016/0927-0256(96)00008-0.Search in Google Scholar

46. Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented- wave method. Phys. Rev. B 1999, 59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

47. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

48. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydroz, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. L., Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406-1–136404-4; https://doi.org/10.1103/physrevlett.100.136406.Search in Google Scholar PubMed

49. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P. Electron energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509; https://doi.org/10.1103/physrevb.57.1505.Search in Google Scholar

50. Whangbo, M. H., Koo, H. J., Dai, D. J. Spin exchange interactions and magnetic structures of extended magnetic solids with localized spins: theoretical descriptions on formal, quantitative and qualitative levels. Solid State Chem. 2003, 176, 417–481; https://doi.org/10.1016/s0022-4596(03)00273-1.Search in Google Scholar

51. Xiang, H. J., Lee, C., Koo, H. J., Gong, X. G., Whangbo, M. H. Magnetic properties and energy-mapping analysis. Dalton Trans. 2013, 42, 823–853; https://doi.org/10.1039/c2dt31662e.Search in Google Scholar PubMed

52. Banks, M. G., Kremer, R. K., Hoch, C., Simon, A., Ouladdiaf, B., Broto, J. M., Rakoto, H., Lee, C., Whangbo, M. H. Magnetic ordering in the frustrated Heisenberg chain system cupric chloride CuCl2. Phys. Rev. B 2009, 80, 024404-1–024404-15.10.1103/PhysRevB.80.024404Search in Google Scholar

53. Bain, G. A., Berry, J. F. Diamagnetic corrections and pascal’s constants. J. Chem. Educ. 2008, 85, 532–539; https://doi.org/10.1021/ed085p532.Search in Google Scholar

Received: 2022-06-26
Accepted: 2022-08-22
Published Online: 2022-09-02
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0040/html
Scroll to top button