Skip to main content
Log in

A Novel Fabrication Approach for Ceramic Tiles from Red Mud and Steel Slag

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In order to investigate the structure and performance of specific ceramic materials, red mud, steel slag, and talc, which are commonly used as ceramic building materials, were fabricated by molding. The influences of particle size and composition on the properties of the ceramic materials were studied by differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. The results indicate that the main crystalline phases were diopside and anorthite. The ceramics possessed the best mechanical properties when sintered at about 1170°C, the particle size of the raw material powders was less than 74 μm, and the ceramic composition comprised 60–70% red mud, 20–30% steel slag, and 10% talc. The results of this work are useful for recycling of steel slag and red mud on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rui, M.N., Carvalheiras, J., Seabra, M.P., Pullar, R.C., and Labrincha, J.A., Innovative application for bauxite residue: red mud-based inorganic polymer spheres as pH regulators, J. Hazard. Mater., 2018, vol. 358, pp. 69–81.

    Article  Google Scholar 

  2. Tang, W.C., Wang, Z., Liu, Y., and Cui, H.Z., Influence of red mud on fresh and hardened properties of self-compacting concrete, Constr. Build. Mater., 2018, vol. 178, pp. 288–300.

    Article  CAS  Google Scholar 

  3. Agatzinileonardou, S., Oustadakis, P., Tsakiridis, P.E., and Ch.M., Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure, J. Hazard. Mater., 2008, vol. 157, pp. 579–586.

    Article  CAS  Google Scholar 

  4. Li, G., Liu, M., Rao, M., Jiang, T., Zhuang, J., and Zhang, Y., Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts, J. Hazard. Mater., 2014, vol. 280, pp. 774–780.

    Article  CAS  Google Scholar 

  5. He, H., Yue, Q., Yuan, S., Gao, B., Yue, G., Wang, J., et al., Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud, J. Hazard. Mater., 2012, vol. 203, pp. 53–61.

    Article  Google Scholar 

  6. Gu, X., Yu, L., Zhou, Y., and Daqiang, C., Composites of steel slag ceramics-glass ceramic prepared by a secondary firing method, Rare Met. Mater. Eng., 2013, vol. 42, pp. 314–316.

    Google Scholar 

  7. Zhao, L., Li, Y., Zhou, Y., and Cang, D., Preparation of novel ceramics with high CaO content from steel slag, Mater. Des., 2014, vol. 64, pp. 608–613.

    Article  CAS  Google Scholar 

  8. Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., and Guermat, A., The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder, Ceram. Int., 2016, vol. 42, pp. 12185–12193.

    Article  CAS  Google Scholar 

  9. Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L.P., Kiyohara, P.K., and Salomão, R., Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 803–812.

    Article  CAS  Google Scholar 

  10. Zhang, M., Han, C., Ni, K., Gu, H., Huang, A., and Yu, C., In situ synthesis of AlN whiskers in mullite-silicon carbide refractory under simulated coke dry quenching conditions, Ceram. Int., 2017, vol. 44, pp. 5945–5949.

    Article  Google Scholar 

  11. Hua, K., Xi, X., Xu, L., Zhao, K., Wu, J., and Shui, A., Effects of AlF3 and MoO3 on properties of Mullite whisker reinforced porous ceramics fabricated from construction waste, Ceram. Int., 2016, vol. 42, pp. 17179–17184.

    Article  CAS  Google Scholar 

  12. Alam, S., Das, S.K., and Rao, B.H., Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material, Constr. Build. Mater., 2019, vol. 211, pp. 932–942.

    Article  CAS  Google Scholar 

  13. Salomo, R., Ferreira, V.L., de Oliveira, I.R., Souza, A.D.V., and Correr, W.R., Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates, J. Eur. Ceram. Soc., 2016, vol. 36, pp. 4225–4235.

    Article  Google Scholar 

  14. Brasileiro, C.T., Conte, S., Contartesi, F., Melchiades, F.G., Zanelli, C., Dondi, M., et al., Effect of strong mineral fluxes on sintering of porcelain stoneware tiles, J. Eur. Ceram. Soc., 2021, vol. 41, pp. 5755–5767.

    Article  CAS  Google Scholar 

  15. Li, S., Du, H., Guo, A., Hai, X., and Yang, D., Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body, Ceram. Int., 2012, vol. 38, pp. 1027–1032.

    Article  CAS  Google Scholar 

  16. Ma, B., Ren, X., Yin, Y., Yuan, L., Zhang, Z., Li, Z., et al., Effects of processing parameters and rare earths additions on preparation of Al2O3–SiC composite powders from coal ash, Ceram. Int., 2017, vol. 43, pp. 11830–11837.

    Article  CAS  Google Scholar 

  17. Dey, A. and Kayal, N., Innocentini, M.D.M., and Chakrabarti, O., Investigation on sacrificial pore former removal and mullite binder phase transformation in powder formulations used for preparation of oxide bonded porous SiC ceramics, Ceram. Int., 2017, vol. 43, pp. 9416–9423.

    Article  CAS  Google Scholar 

  18. Han, F., Xu, C., Wei, W., Zhang, F., Xu, P., Zhong, Z., et al., Corrosion behaviors of porous reaction-bonded silicon carbide ceramics incorporated with CaO, Ceram. Int., 2018, vol. 44, pp. 12225–12232.

    Article  CAS  Google Scholar 

  19. Wang, Q.T., Yu, H.Q., Ben, T., Li, Q., Li, F.Z., Xu, H.J., et al., Preparation of lightweight high-strength thermal insulation and decoration integration porous ceramics using red mud, J. Aust. Ceram. Soc., 2020, vol. 56, pp. 91–98.

    Article  CAS  Google Scholar 

  20. Li, Y.C., Min, X.B., Ke, Y., Chai, L.Y., Shi, M.Q., Tang, C.J., et al., Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material, J. Hazard. Mater., 2017, vol. 344, pp. 343–349.

    Article  Google Scholar 

  21. Liu, S., Guan, X., Zhang, S., Dou, Z., Feng, C., Zhang, H., et al., Sintered bayer red mud based ceramic bricks: microstructure evolution and alkalis immobilization mechanism, Ceram. Int., 2017, vol. 43, pp. 13004–13008.

    Article  CAS  Google Scholar 

  22. Wang, W., Liu, H., and Gu, W., A novel fabrication approach for improving the mechanical and sound absorbing properties of porous sound-absorbing ceramics, J. Alloys Compd., 2017, vol. 695, pp. 2477–2482.

    Article  CAS  Google Scholar 

  23. Xie, M., Wu, X., Liu, J., and Kai, Z., In-situ synthesis and textural evolution of the novel carbonaceous SiC/mullite aerogel via polymer-derived ceramics route, Ceram. Int., 2017, vol. 43, pp. 9896–9905.

  24. Soro, N., Aldon, L., Olivier-Fourcade, J., Jumas, J.C., and Blanchart, P., Role of iron in mullite formation from kaolins by Mossbauer spectroscopy and Rietveld refinement, J. Am. Ceram. Soc., 2010, vol. 86, pp. 129–134.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Science and Technology Program of Henan Province (202002210326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dang, H. & Wang, W. A Novel Fabrication Approach for Ceramic Tiles from Red Mud and Steel Slag. Russ. J. Non-ferrous Metals 63, 441–447 (2022). https://doi.org/10.3103/S1067821222040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222040083

Keywords:

Navigation