Skip to main content
Log in

Structure and Properties of Al–Cu–Yb Alloy with Iron and Silicon Impurities

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The effect of iron and silicon impurities on the phase composition and properties of the Al–4.3Cu–2.2Yb quasi-binary alloy has been determined. In the microstructure of the cast alloy, in addition to the aluminum solid solution and dispersed eutectic ((Al) + Al8Cu4Yb), in which about 1% of iron is dissolved, the Al3Yb/(Al,Cu)17Yb2 and Al80Yb5Cu6Si8 phases are identified, which are not found in an alloy of a similar composition without impurities. After homogenization annealing at a temperature of 590°C for 3 h, the structure is represented by compact fragmented and coagulated intermetallic compounds 1–2 μm in size and a solid solution (Al) with a maximum copper content of 2.1%. The hardness of the deformed sheets significantly decreases after 0.5 h and changes slightly up to 6 h of annealing at temperatures of 150–210°C. After annealing at 180°C for 3 h, a substructure with a subgrain size of 200–400 nm is formed in the alloy structure. The softening after annealing of the rolled sheets at temperatures up to 250°C occurs owing to the recovery and polygonization processes and above 300°C owing to recrystallization. After annealing for 1 h at 300°C, the recrystallized grain size is 7 μm. The grain size increases to 16 µm after annealing for 1 h at 550°C. The Al–4.3Cu–2.2Yb alloy with impurities has a conditional yield strength of 205–273 MPa, a tensile strength of 215–302 MPa, and a relative elongation of 2.3–5.6% in the rolled alloy after annealing. Iron and silicon impurities do not lead to the formation of coarse lamellar intermetallic phases and do not reduce the ductility of the investigated alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zolotorevsky, V.S., Belov, N.A., and Glazoff, M.V., Casting Aluminum Alloys, New Kensington, PA: Alcoa Technical Center, 2007.

    Book  Google Scholar 

  2. Belov, N.A. and Khvan, A.V., Structure and phase composition of alloys of the Al–Ce–Cu system in the region of the Al–Al8CeCu4 quasi-binary join, Russ. J. Non-Ferrous Met., 2007, vol. 48, pp. 45–50.

    Article  Google Scholar 

  3. Belov, N.A., Khvan, A.V., and Alabin, A.N., Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner, Mater. Sci. Forum, 2006, vols. 519–521, part 1, pp. 395–400.

    Article  Google Scholar 

  4. Belov, N.A. and Khvan, A.V., The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner, Acta Mater., 2007, vol. 55, pp. 5473–5482.

    Article  CAS  Google Scholar 

  5. Pozdniakov, A.V. and Barkov, R.Y., Microstructure and materials characterization of the novel Al–Cu–Y alloy, Mater. Sci. Technol., 2018, vol. 34, no. 12, pp. 1489–1496.

    Article  CAS  Google Scholar 

  6. Amer, S.M., Barkov, R.Yu., Yakovtseva, O.A., and Pozdniakov, A.V., Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2,3Y and Al–6Cu–4.05Er alloys, Phys. Met. Metallogr., 2020, vol. 121, no. 5, pp. 476–482.

    Article  CAS  Google Scholar 

  7. Pozdniakov, A.V., Barkov, R.Yu., Amer, S.M., Levchenko, V.S., Kotov, A.D., and Mikhaylovskaya, A.V., Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy, Mater. Sci. Eng., A, 2019, vol. 758, pp. 28–35.

    Article  CAS  Google Scholar 

  8. Amer, S.M., Barkov, R.Yu., and Pozdniakov, A.V., Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy, Phys. Met. Metallogr., 2020, vol. 121, no. 12, pp. 1227–1232.

    Article  CAS  Google Scholar 

  9. Amer, S.M., Barkov, R.Yu., Prosviryakov, A.S., and Pozdniakov, A.V., Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems, Phys. Met. Metallogr., 2021, vol. 122, pp. 908–914.

    Article  CAS  Google Scholar 

  10. Amer, S.M., Barkov, R.Yu., Prosviryakov, A.S., and Pozdniakov, A.V., Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys, Phys. Met. Metallogr., 2021, vol. 122, pp. 915–922.

    Article  CAS  Google Scholar 

  11. Pozdnyakov, A.V., Barkov, R.Yu., Sarsenbaev, Zh., Amer, S.M., and Prosviryakov, A.S., Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy, Phys. Met. Metallogr., 2019, vol. 120, no. 6, pp. 614–619.

    Article  CAS  Google Scholar 

  12. Amer, S.M., Barkov, R.Yu., Yakovtseva, O.A., Loginova, I.S., and Pozdniakov, A.V., Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy, Mater. Sci. Technol., 2020, vol. 36, no. 4, pp. 453–459.

    Article  CAS  Google Scholar 

  13. Amer, S.M., Mikhaylovskaya, A.V., Barkov, R.Yu., Kotov, A.D., Mochugovskiy, A.G., Yakovtseva, O.A., Glavatskikh, M.V., Loginova, I.S., Medvedeva, S.V., and Pozdniakov, A.V., Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy, JOM, 2021, vol. 73, no. 10, pp. 3092–3101.

    Article  CAS  Google Scholar 

  14. Amer, S., Yakovtseva, O., Loginova, I., Medvedeva, S., Prosviryakov, Al., Bazlov, A., Barkov, R., and Pozdniakov, A., The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn-Zr alloy, Appl. Sci., 2020, vol. 10, p. 5345.

    Article  CAS  Google Scholar 

  15. Amer, S., Barkov, R., and Pozdniakov, A., Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys, Metals, 2021, vol. 11, p. 476.

    Article  CAS  Google Scholar 

  16. Amer, S.M., Barkov, R.Yu., and Pozdniakov, A.V., Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy, Phys. Met. Metallogr., 2020, vol. 121, no. 10, pp. 1002–1007.

    Article  CAS  Google Scholar 

  17. Amer, S.M., Barkov, R.Yu., and Pozdniakov, A.V., Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy, Phys. Met. Metallogr., 2020, vol. 121, no. 5, pp. 495–499.

    Article  CAS  Google Scholar 

  18. Barkov, M.V., Mamzurina, O.I., Glavatskikh, M.V., Barkov, R.Yu., and Pozdnyakov, A.V., Influence of impurities on phase composition and properties of Al–Cu–Gd alloy, Fiz. Met. Metalloved., 2022, vol. 123, no. 6, pp. 1–6.

    Google Scholar 

  19. Vo, N.Q., Dunand, D.C., and Seidman, D.N., Improving aging and creep resistance in a dilute A-Sc alloy by microalloying with Si, Zr and Er, Acta Mater., 2014, vol. 63, pp. 73–85.

    Article  CAS  Google Scholar 

  20. De Luca, A., Dunand, D.C., and Seidman, D.N., Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio, Acta Mater., 2016, vol. 119, pp. 35–42.

    Article  CAS  Google Scholar 

  21. Booth-Morrison, C., Seidman, D.N., and Dunand, D.C., Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys, Acta Mater., 2012, vol. 60, pp. 3643–3654.

    Article  CAS  Google Scholar 

  22. Pozdniakov, A.V., Aitmagambetov, A.A., Makhov, S.V., and Napalkov, V.I., Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive, Phys. Met. Metallogr., 2017, vol. 118, no. 5, pp. 479–484.

    Article  CAS  Google Scholar 

  23. Pozdnyakov, A.V. and Barkov, R.Yu., Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system, Metallurgist, 2019, vol. 63, nos. 1–2, pp. 79–86.

    Article  CAS  Google Scholar 

  24. Wen, S.P., Gao, K.Y., Huang, H., Wang, W., and Nie, Z.R., Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys, J. Alloys Compd., 2014, vol. 599, pp. 65–70.

    Article  CAS  Google Scholar 

  25. Peng, G., Chen, K., Fang, H., and Chen, S., A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy, Mater. Sci. Eng., A, 2012, vol. 535, pp. 311–315.

    Article  CAS  Google Scholar 

  26. Barkov, R.Y., Yakovtseva, O.A., Mamzurina, O.I., Loginova, I.S., Medvedeva, S.V., Proviryakov, A.S., Mikhaylovskaya, A.V., and Pozdniakov, A.V., Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy, Phys. Met. Metallogr., 2020, vol. 121, no. 6, pp. 604–609.

    Article  CAS  Google Scholar 

  27. Nhon, Q.Vo., Davaadorj, B., Amirreza, S., Evander, R., and Dunand, D.C., Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy, Materialia, 2018, vol. 4, pp. 65–69.

    Article  CAS  Google Scholar 

  28. Van Dalen, M.E., Gyger, T., Dunand, D.C., and Seidman, D.N., Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys, Acta Mater., 2011, vol. 59, pp. 7615–7626.

    Article  CAS  Google Scholar 

  29. Fang, H.C., Shang, P.J., Huang, L.P., Chen, K.H., Liu, G., and Xiong, X., Precipitates and precipitation behavior in Al–Zr–Yb–Cr alloys, Mater. Lett., 2012, vol. 75, pp. 192–195.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Zhou, W., Gao, H., Han, Y., Wang, K., Wang, J., Sun, B., Gu, S., and You, W., Precipitation evolution of A–Zr–Yb alloys during isochronal aging, Scr. Mater., 2013, vol. 69, pp. 477–480.

    Article  CAS  Google Scholar 

  31. Fang, H.C., Chen, K.H., Chen, X., Chao, H., and Peng, G.S., Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy, Corros. Sci., 2009, vol. 51, pp. 2872–2877.

    Article  CAS  Google Scholar 

  32. Chen, K.H., Fang, H.C., Zhang, Z., Chena, X., and Liu, G., Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al–Zn–Mg–Cu alloys, Mater. Sci. Eng., A, 2008, vol. 497, pp. 426–431.

    Article  CAS  Google Scholar 

  33. Song, M., Wu, Z., and He, Y., Effects of Yb on the mechanical properties and microstructures of an Al–Mg alloy, Mater. Sci. Eng., A, 2008, vol. 497, pp. 519–523.

    Article  CAS  Google Scholar 

  34. Pozdnyakov, A.V., Barkov, R.Yu., and Levchenko, V.S., Influence of Yb on the phase composition and mechanical properties of low-scandium Al–Mg–Mn–Zr–Sc and Al–Mg–Cr–Zr–Sc alloys, Phys. Met. Metallogr., 2020, vol. 121, no. 1, pp. 84–88.

    Article  CAS  Google Scholar 

  35. Zolotorevskiy, V.S. and Pozdniakov, A.V., Determining the hot cracking index of Al-Si-Cu-Mg casting alloys calculated using the effective solidification range, Int. J. Cast Met. Res., 2014, vol. 27, no. 4, pp. 193–198.

    Article  CAS  Google Scholar 

  36. Zolotorevskii, V.S., Pozdnyakov, A.V., and Churyumov, A.Y., Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematic simulation, Phys. Met. Metallogr., 2014, vol. 115, no. 3, pp. 286–294.

    Article  Google Scholar 

  37. Shurkin, P.K., Belov, N.A., Musin, A.F., and Aksenov, A.A., New high-strength casting Al–Zn–Mg–Ca–Fe-based aluminum alloy without heat treatment, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 2, pp. 179–187.

    Article  Google Scholar 

  38. Shurkin, P.K., Belov, N.A., Musin, A.F., and Samoshina, M.E., Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy, Phys. Met. Metallogr., 2020, vol. 121, no. 2, pp. 135–142.

    Article  CAS  Google Scholar 

  39. Belov, N.A., Naumova, E.A., Doroshenko, V.V., and Avxentieva, N.N., Combined effect of calcium and silicon on the phase composition and structure of Al–10% Mg alloy, Russ. J. Non-Ferrous Met., 2018, vol. 59, pp. 67–75.

    Article  Google Scholar 

  40. Loginova, I.S., Sazera, M.V., Popov, N.A., Pozdnyakov, A.V., and Solonin, A.N., Features of structure formation in an Al–Fe–Mn alloy upon crystallization with various cooling rates, Russ. J. Non-Ferrous Met., 2021, vol. 62, pp. 72–81.

    Article  Google Scholar 

  41. Belov, N.A., Naumova, E.A., Doroshenko, V.V., and Bazlova, T.A., Effect of scandium on the phase composition and hardening of casting aluminum alloys of the Al–Ca–Si system, Russ. J. Non-Ferrous Met., 2016, vol. 57, pp. 695–702.

    Article  Google Scholar 

  42. Belov, N.A., Alabin, A.N., Sannikov, A.V., and Deev, V.B., Primary crystallization in the Al–Fe–Mn–Ni–Si system as applied to casting alloys based on aluminum-nickel eutectic, Russ. J. Non-Ferrous Met., 2014, vol. 55, pp. 356–364.

    Article  Google Scholar 

  43. Huang, G., Liu, L., Zhang, L., and Jin, Z., Thermodynamic description of the Al–Cu–Yb ternary system supported by first-principles calculations, J. Min. Metall., Sect. B., 2016, vol. 52, pp. 177–183.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-79-00193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Barkov, O. I. Mamzurina, M. V. Glavatskikh, R. Yu. Barkov or A. V. Pozdniakov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkov, M.V., Mamzurina, O.I., Glavatskikh, M.V. et al. Structure and Properties of Al–Cu–Yb Alloy with Iron and Silicon Impurities. Russ. J. Non-ferrous Metals 63, 434–440 (2022). https://doi.org/10.3103/S1067821222040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222040034

Keywords:

Navigation