Skip to main content
Log in

Influence of Parameters of Melt Processing by Nanosecond Electromagnetic Pulses on the Structure Formation of Cast Aluminum Matrix Composites

  • FOUNDRY
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The work is aimed at establishing the effect of nanosecond electromagnetic pulses (NEPs) with different amplitudes on the formation of the structure of cast aluminum matrix composites of the pseudo-binary Al–Mg2Si system with hypoeutectic (5 wt % Mg2Si) and hypereutectic (15 wt % Mg2Si) composition. With an increase in the amplitude of the generator of NEPs in alloys with 5 and 15 wt % Mg2Si, the structural components of the matrix alloy (α-solid solution and eutectic) are refined, while no significant differences in the sizes and morphology of primary crystals of Mg2Si in the hypereutectic range of compositions were observed in the entire range of tested variants of the amplitude of the generator of NEPs. Presumably, the observed nature of the influence of NEPs on the structure of composites in the hypereutectic region of compositions is associated with the features of their crystallization behavior. The temperature range of the existence of the two-phase region L + Mg2Si is much lower than the temperatures of irradiation with NEPs; apparently, in connection with this, NEPs do not affect the thermodynamic state of the interfaces “primary crystal Mg2Si–melt.” It has been shown that a promising option for the simultaneous modifying effect on all structural components of Al–Mg2Si aluminum matrix composites (solid solution, eutectic, primary Mg2Si particles) is a combination of thermal-rate treatment and irradiation of melts with NEPs, as well as additional processing of melts by NEPs during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mortensen, A. and Llorca, J., Metal matrix composites, Annu. Rev. Mater. Res., 2010, vol. 40, no. 1, pp. 243–270. https://doi.org/10.1146/annurev-matsci-070909-104511

    Article  CAS  Google Scholar 

  2. Rohatgi, P.K., Ajay Kumar, P., Chelliah, N.M., and Rajan, T.P.D., Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future, JOM, 2020, vol. 72, no. 8, pp. 2912–2926. https://doi.org/10.1007/s11837-020-04253-x

    Article  CAS  Google Scholar 

  3. Mavhungu, S.T., Akinlabi, E.T., Onitiri, M.A., and Varachia, F.M., Aluminum matrix composites for industrial use: Advances and trends, Procedia Manuf., 2017, vol. 7, pp. 178–182. https://doi.org/10.1016/j.promfg.2016.12.045

    Article  Google Scholar 

  4. Georgatis, E., Lekatou, A., Karantzalis, A.E., Petropoulos, H., Katsamakis, S., and Poulia, A., Development of a cast Al–Mg2Si–Si in situ composite: Microstructure, heat treatment, and mechanical properties, J. Mater. Eng. Perform., 2013, vol. 22, pp. 729–741.

    Article  CAS  Google Scholar 

  5. Moharami, A., Razaghian, A., and Babaei, B., Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al–Mg2Si composite, J. Compos. Mater., 2020, vol. 54, no. 26, pp. 4035–4057. https://doi.org/10.1177/0021998320925528

    Article  CAS  Google Scholar 

  6. Liu, Z., Xie, M., and Liu, X.M., Microstructure and properties of in-situ Al–Si–Mg2Si composite prepared by melt superheating, Appl. Mech. Mater., 2011, vol. 52, pp.750–754. https://doi.org/10.4028/www.scientific.net/AMM.52-54.750

  7. Nordin, N.A., Farahany, S., Ourdjini, A., Abu Bakar, T.A., and Hamzah, E., Refinement of Mg2Si reinforcement in a commercial Al–20% Mg2Si in-situ composite with bismuth, antimony and strontium, Mater. Charact., 2013, vol. 86, pp. 97–107.

    Article  CAS  Google Scholar 

  8. Si, Y. and Kevluzov, D.S., Research on the long-lasting and remelting properties of Nd modification effect on cast Al–Mg2Si metal matrix composite, Mater. Sci. Forum, 2020, vol. 1001, pp. 196–201. https://doi.org/10.4028/www.scientific.net/msf.1001.196

  9. Khorshidi, R., Honarbakhsh Raouf, A., Emamy, M., and Campbell, J., The study of Lion the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite, J. Alloys Compd., 2011, vol. 509, pp. 9026–9033.

    Article  CAS  Google Scholar 

  10. Zhao, Y.G., Qin, Q.D., Zhou, W., and Liang, Y.H., Microstructure of the Ce-modified in situ Mg2Si/Al–Si–Cu composite, J. Alloys Compd., 2005, vol. 389, pp. L1–L4.

    Article  CAS  Google Scholar 

  11. Deev, V.B., Prusov, E.S., and Kutsenko, A.I., Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods, Metall. Ital., 2018, no. 2, pp. 16–24.

  12. Konovalov, S.V., Danilov, V.I., Zuev, L.B., Filip’ev, R.A., and Gromov, V.E., On the influence of the electrical potential on the creep rate of aluminum, Phys. Solid State, 2007, vol. 49, no. 8, pp. 1457–1459. https://doi.org/10.1134/S1063783407080094

    Article  CAS  Google Scholar 

  13. Aryshenskii, E., Hirsch, J., Yashin, V., Konovalov, S., and Kawalla, R., Influence of local inhomogeneity of thermomechanical treatment conditions on microstructure evolution in aluminum alloys, J. Mater. Eng. Perform, 2018, vol. 27, no. 12, pp. 6780–6799. https://doi.org/10.1007/s11665-018-3733-8

    Article  CAS  Google Scholar 

  14. Nordin, N.A., Abubakar, T., Hamzeh, E., Farahany, S., and Ourdjini, A., Effect of superheating melt treatment on Mg2Si particulate reinforcement in Al–Mg2Si–Cu in situ composite, Procedia Eng., 2017, vol. 184, pp. 595–603.

    Article  CAS  Google Scholar 

  15. Zhang, J.T., Zhao, Y.G., Xu, X.F., and Liu, X.B., Effect of ultrasonic on morphology of primary Mg2Si in in-situ Mg2Si/Al composite, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2852–2856.

    Article  CAS  Google Scholar 

  16. Deev, V.B., Ri, E.H., Prusov, E.S., Ermakov, M.A., and Goncharov, A.V., Grain refinement of casting aluminum alloys of the Al–Mg–Si system by processing the liquid phase using nanosecond electromagnetic pulses, Russ. J. Non-Ferrous Met., 2021, vol. 62, no. 5, pp. 522–530.

    Article  Google Scholar 

  17. Li, J., An, Q., Wu, S., Li, F., Lü, S., and Guo, W., Relationship of Mg2Si morphology with Mg2Si content and its effect on properties of in-situ Mg2Si/Al–Cu composites, J. Alloys Compd., 2019, vol. 808, article no. 151771.

    Article  CAS  Google Scholar 

  18. Li, C., Wu, Y.Y., Li, H., and Liu, X.F., Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys, Acta Mater., 2011, vol. 59, pp. 1058–1067. https://doi.org/10.1016/j.actamat.2010.10.036

    Article  CAS  Google Scholar 

  19. Li, C., Wang, C., Ju, H., Xue, X., Zha, M., and Wang, H., Prediction of modified morphology for primary Mg2Si induced by trace-element adsorption: A first-principles study, Materialia, 2020, vol. 14, article no. 100875. https://doi.org/10.1016/j.mtla.2020.100875

    Article  CAS  Google Scholar 

  20. Bhandari, R., Mallik, M., and Mondal, M.K., Microstructure evolution and mechanical properties of in situ hypereutectic Al–Mg2Si composites, AIP Conf. Proc., 2019, vol. 2162, article no. 020145. https://doi.org/10.1063/1.5130355

    Article  CAS  Google Scholar 

  21. Deev, V., Ri, E., and Prusov, E., Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings, Proc. 73rd World Foundry Congress “Creative Foundry” (WFC 2018), Krakow, 2018, pp. 155–156.

  22. Krymsky, V. and Shaburova, N., Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions, Materials, 2018, vol. 11, no. 6, article no. 954.

    Article  Google Scholar 

  23. Ri, E.K., Hosen, R., Ermakov, M.A., Knyazev, G.A., Dzhou, B.L., and Ri, V.E., Solidification of low-silicon iron under the action of nanosecond electromagnetic pulses, Steel Trans., 2013, vol. 43, no. 8, pp. 471–473.

    Article  Google Scholar 

  24. Krymsky, V.V., Shaburova, N.A., and Litvinova, E.V., Microstructure and properties of cast metal treated with electromagnetic pulses while in molten state, Mater. Sci. Forum, 2016, vol. 843, pp. 106–110.

    Article  Google Scholar 

  25. Deev, V., Prusov, E., and Rakhuba, E., Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application, Mater. Sci. Forum, 2019, vol. 946, pp. 655–660. https://doi.org/10.4028/www.scientific.net/MSF.946.655

Download references

Funding

This study was supported by a grant from the Russian Science Foundation (project no. 20-19-00687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Deev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deev, V.B., Ri, E.K., Prusov, E.S. et al. Influence of Parameters of Melt Processing by Nanosecond Electromagnetic Pulses on the Structure Formation of Cast Aluminum Matrix Composites. Russ. J. Non-ferrous Metals 63, 392–399 (2022). https://doi.org/10.3103/S1067821222040058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222040058

Keywords:

Navigation