skip to main content
research-article

The multiple roles that IPv6 addresses can play in today's internet

Published:06 September 2022Publication History
Skip Abstract Section

Abstract

The Internet use IP addresses to identify and locate network interfaces of connected devices. IPv4 was introduced more than 40 years ago and specifies 32-bit addresses. As the Internet grew, available IPv4 addresses eventually became exhausted more than ten years ago. The IETF designed IPv6 with a much larger addressing space consisting of 128-bit addresses, pushing back the exhaustion problem much further in the future.

In this paper, we argue that this large addressing space allows reconsidering how IP addresses are used and enables improving, simplifying and scaling the Internet. By revisiting the IPv6 addressing paradigm, we demonstrate that it opens up several research opportunities that can be investigated today. Hosts can benefit from several IPv6 addresses to improve their privacy, defeat network scanning, improve the use of several mobile access network and their mobility as well as to increase the performance of multicore servers. Network operators can solve the multihoming problem more efficiently and without putting a burden on the BGP RIB, implement Function Chaining with Segment Routing, differentiate routing inside and outside a domain given particular network metrics and offer more fine-grained multicast services.

References

  1. Aditya Akella, Bruce Maggs, Srinivasan Seshan, Anees Shaikh, and Ramesh Sitaraman. 2003. A measurement-based analysis of multihoming. In SIGCOMM'03. 353--364.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mark Allman, Vern Paxson, and Jeff Terrell. 2007. A brief history of scanning. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement. 77--82.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Baker, C. Bowers, and J. Linkova. 2019. Enterprise Multihoming using Provider-Assigned IPv6 Addresses without Network Prefix Translation: Requirements and Solutions. RFC 8678 (Informational). Google ScholarGoogle ScholarCross RefCross Ref
  4. Paul Baran. 2002. The beginnings of packet switching: some underlying concepts. IEEE Communications Magazine 40, 7 (2002), 42--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Tom Barbette. 2022. WRK-MultiProtocol. Retrieved June 1, 2022 from https://github.com/tbarbette/wrk-quicGoogle ScholarGoogle Scholar
  6. Tom Barbette, Georgios P Katsikas, Gerald Q Maguire Jr, and Dejan Kostić. 2019. RSS++ load and state-aware receive side scaling. In Proceedings of the 15th international conference on emerging networking experiments and technologies. 318--333.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tom Barbette and Nikita Tyunyayev. 2022. picoquic-dpdk. Retrieved June 1, 2022 from https://github.com/IPNetworkingLab/picoquic-dpdkGoogle ScholarGoogle Scholar
  8. Paul Barham, Steven Hand, Rebecca Isaacs, Paul Jardetzky, Richard Mortier, and Timothy Roscoe. 2002. Techniques for lightweight concealment and authentication in IP networks. Intel Research Berkeley. July (2002).Google ScholarGoogle Scholar
  9. Steven M Bellovin. 1989. Security problems in the TCP/IP protocol suite. ACM SIGCOMM Computer Communication Review 19, 2 (1989), 32--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Robert Beverly, Ramakrishnan Durairajan, David Plonka, and Justin P Rohrer. 2018. In the IP of the beholder: Strategies for active IPv6 topology discovery. In Proceedings of the Internet Measurement Conference 2018. 308--321.Google ScholarGoogle Scholar
  11. N. Bhaskar, A. Gall, J. Lingard, and S. Venaas. 2008. Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM). RFC 5059 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Bradner and A. Mankin. 1993. IP: Next Generation (IPng) White Paper Solicitation. RFC 1550 (Informational). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Bush. 2017. BGPsec Operational Considerations. RFC 8207 (Best Current Practice). Google ScholarGoogle ScholarCross RefCross Ref
  14. CAIDA AS Rank 2022. CAIDA AS Rank. Retrieved May 31, 2022 from https://as-rank.caida.org/Google ScholarGoogle Scholar
  15. Vinton Cerf and Robert Kahn. 1974. A protocol for packet network intercommunication. IEEE Transactions on communications 22, 5 (1974), 637--648.Google ScholarGoogle ScholarCross RefCross Ref
  16. Luca Cittadini, Wolfgang Mühlbauer, Steve Uhlig, Randy Bush, Pierre Francois, and Olaf Maennel. 2010. Evolution of Internet address space deaggregation: myths and reality. IEEE Journal on Selected Areas in Communications 28, 8 (2010), 1238--1249.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Francois Clad, Xiaohu Xu, Clarence Filsfils, Daniel Bernier, Cheng Li, Bruno Decraene, Shaowen Ma, Chaitanya Yadlapalli, Wim Henderickx, and Stefano Salsano. 2021. Service Programming with Segment Routing. Internet-Draft draft-ietf-spring-sr-service-programming-05. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-05 Work in Progress.Google ScholarGoogle Scholar
  18. Stephen D Crocker. 2019. The ARPAnet and its impact on the state of networking. Computer 52, 10 (2019), 14--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Andrei Croitoru, Dragos Niculescu, and Costin Raiciu. 2015. Towards wifi mobility without fast handover. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). 219--234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: Design and evaluation. In Proceedings of the 13th international conference on emerging networking experiments and technologies. 160--166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Cedric De Launois, Bruno Quoitin, and Olivier Bonaventure. 2006. Leveraging network performance with IPv6 multihoming and multiple provider-dependent aggregatable prefixes. Computer Networks 50, 8 (2006), 1145--1157.Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Deering and R. Hinden. 1998. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460 (Draft Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fabien Duchene and Olivier Bonaventure. 2017. Making Multipath TCP friendlier to load balancers and anycast. In 2017 IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  24. Zakir Durumeric, Eric Wustrow, and J Alex Halderman. 2013. ZMap: Fast Internet-wide Scanning and Its Security Applications. In 22nd USENIX Security Symposium (USENIX Security 13). 605--620.Google ScholarGoogle Scholar
  25. K. Egevang and P. Francis. 1994. The IP Network Address Translator (NAT). RFC 1631 (Informational). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Farinacci and Y. Cai. 2006. Anycast-RP Using Protocol Independent Multicast (PIM). RFC 4610 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  27. Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. 2003. Guidelines for interdomain traffic engineering. ACM SIGCOMM Computer Communication Review 33, 5 (2003), 19--30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Fenner, M. Handley, H. Holbrook, I. Kouvelas, R. Parekh, Z. Zhang, and L. Zheng. 2016. Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 7761 (Internet Standard). Google ScholarGoogle ScholarCross RefCross Ref
  29. C. Filsfils (Ed.), P. Camarillo (Ed.), J. Leddy, D. Voyer, S. Matsushima, and Z. Li. 2021. Segment Routing over IPv6 (SRv6) Network Programming. RFC 8986 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  30. C. Filsfils (Ed.), S. Previdi (Ed.), L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir. 2018. Segment Routing Architecture. RFC 8402 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  31. A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. 2013. TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824 (Experimental). Google ScholarGoogle ScholarCross RefCross Ref
  32. A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch. 2020. TCP Extensions for Multipath Operation with Multiple Addresses. RFC 8684 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  33. Kensuke Fukuda and John Heidemann. 2018. Who knocks at the IPv6 door? detecting IPv6 scanning. In Proceedings of the Internet Measurement Conference 2018. 231--237.Google ScholarGoogle Scholar
  34. Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim Lone, Maciej Korczyński, Stephen D Strowes, Luuk Hendriks, and Georg Carle. 2018. Clusters in the expanse: Understanding and unbiasing IPv6 hitlists. In Proceedings of the Internet Measurement Conference 2018. 364--378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Gont, S. Krishnan, T. Narten, and R. Draves. 2021. Temporary Address Extensions for Stateless Address Autoconfiguration in IPv6. RFC 8981 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Halpern (Ed.) and C. Pignataro (Ed.). 2015. Service Function Chaining (SFC) Architecture. RFC 7665 (Informational). Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Handley, C. Perkins, and E. Whelan. 2000. Session Announcement Protocol. RFC 2974 (Experimental). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Hinden and S. Deering. 2006. IP Version 6 Addressing Architecture. RFC 4291 (Draft Standard). Google ScholarGoogle ScholarCross RefCross Ref
  39. R. Hinden (Ed.) and S. Deering (Ed.). 1995. IP Version 6 Addressing Architecture. RFC 1884 (Historic). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost, Narseo Vallina-Rodriguez, and Oliver Hohlfeld. 2020. Tracking the deployment of TLS 1.3 on the Web: A story of experimentation and centralization. ACM SIGCOMM Computer Communication Review 50, 3 (2020), 3--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Geoff Huston. 2017. BGP more specifics: routing vandalism or useful? (June 2017). https://blog.apnic.net/2017/06/26/bgp-specifics-routing-vandalism-useful/.Google ScholarGoogle Scholar
  42. Geoff Huston. 2022. BGP in 2021 - The BGP Table. (Jan 2022). https://www.potaroo.net/ispcol/2022-01/bgp2021.html.Google ScholarGoogle Scholar
  43. IEEE. [n.d.]. Guidelines for 64-bit Global Identifier (EUI-64) Registration Authority.Google ScholarGoogle Scholar
  44. Intel. 2016. Receive-Side Scaling (RSS). Retrieved May 18, 2022 from https://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdfGoogle ScholarGoogle Scholar
  45. J. Iyengar (Ed.) and M. Thomson (Ed.). 2021. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  46. Said Jawad Saidi, Oliver Gasser, and Georgios Smaragdakis. 2022. One Bad Apple Can Spoil Your IPv6 Privacy. ACM SIGCOMM Computer Communication Review 52, 2 (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Siyuan Jia, Matthew Luckie, Bradley Huffaker, Ahmed Elmokashfi, Emile Aben, Kimberly Claffy, and Amogh Dhamdhere. 2019. Tracking the deployment of IPv6: Topology, routing and performance. Computer Networks 165 (2019), 106947.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker, and Amin Vahdat. 2012. Chronos: Predictable low latency for data center applications. In Proceedings of the Third ACM Symposium on Cloud Computing. 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Underlying Hardware. In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI). 171--186.Google ScholarGoogle Scholar
  50. Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson, Narseo Vallina-Rodriguez, and Juan Caballero. 2018. Coming of age: A longitudinal study of tls deployment. In Proceedings of the Internet Measurement Conference 2018. 415--428.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. J. Laganier and L. Eggert. 2016. Host Identity Protocol (HIP) Rendezvous Extension. RFC 8004 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  52. Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017. The quic transport protocol: Design and internet-scale deployment. In Proceedings of the conference of the ACM special interest group on data communication. 183--196.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. Lepinski (Ed.) and K. Sriram (Ed.). 2017. BGPsec Protocol Specification. RFC 8205 (Proposed Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian Huitema, and Mirja Kühlewind. 2022. Multipath Extension for QUIC. Internet-Draft draft-ietf-quic-multipath-01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01 Work in Progress.Google ScholarGoogle Scholar
  55. Michael Luby, Lorenzo Vicisano, Jim Gemmell, Luigi Rizzo, M Handley, and Jon Crowcroft. 2002. The use of forward error correction (FEC) in reliable multicast. Technical Report. RFC 3453, December.Google ScholarGoogle Scholar
  56. Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan, Sylvia Ratnasamy, and Scott Shenker. 2021. Democratizing cellular access with CellBricks. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 626--640.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. R. Moskowitz (Ed.), T. Heer, P. Jokela, and T. Henderson. 2015. Host Identity Protocol Version 2 (HIPv2). RFC 7401 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  58. Austin Murdock, Frank Li, Paul Bramsen, Zakir Durumeric, and Vern Paxson. 2017. Target generation for internet-wide IPv6 scanning. In Proceedings of the 2017 Internet Measurement Conference. 242--253.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Ryo Nakamura, Kazuki Shimizu, Teppei Kamata, and Cristel Pelsser. 2022. A First Measurement with BGP Egress Peer Engineering. In Passive and Active Measurement - 23th International Conference, PAM 2022.Google ScholarGoogle Scholar
  60. T. Narten and R. Draves. 2001. Privacy Extensions for Stateless Address Auto-configuration in IPv6. RFC 3041 (Proposed Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. T. Narten, R. Draves, and S. Krishnan. 2007. Privacy Extensions for Stateless Address Autoconfiguration in IPv6. RFC 4941 (Draft Standard). Google ScholarGoogle ScholarCross RefCross Ref
  62. Mehdi Nikkhah and Roch Guérin. 2015. Migrating the internet to IPv6: An exploration of the when and why. IEEE/ACM Transactions on Networking 24, 4 (2015), 2291--2304.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Jörg Nonnenmacher and Ernst W Biersack. 1996. Reliable multicast: Where to use FEC. In International Workshop on Protocols for High Speed Networks. Springer, 134--148.Google ScholarGoogle Scholar
  64. Porapat Ongkanchana, Romain Fontugne, Hiroshi Esaki, Job Snijders, and Emile Aben. 2021. Hunting BGP Zombies in the Wild. In Proceedings of the Applied Networking Research Workshop (Virtual Event, USA) (ANRW '21). Association for Computing Machinery, New York, NY, USA, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T Morris. 2012. Improving network connection locality on multicore systems. In Proceedings of the 7th ACM european conference on Computer Systems. 337--350.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. Postel. 1981. Internet Protocol. RFC 791 (Internet Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. J. Postel. 1981. Transmission Control Protocol. RFC 793 (Internet Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Peter Psenak, Shraddha Hegde, Clarence Filsfils, Ketan Talaulikar, and Arkadiy Gulko. 2022. IGP Flexible Algorithm. Internet-Draft draft-ietf-lsr-flex-algo-20. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-lsr-flex-algo-20 Work in Progress.Google ScholarGoogle Scholar
  69. P. Quinn (Ed.) and T. Nadeau (Ed.). 2015. Problem Statement for Service Function Chaining. RFC 7498 (Informational). Google ScholarGoogle ScholarCross RefCross Ref
  70. Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). 2006. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. RIPE RIS 2022. The RIPE Routing Information Services. Retrieved May 31, 2022 from http://www.ris.ripe.net.Google ScholarGoogle Scholar
  72. A S M Rizvi and John Heidemann. 2022. Chhoyhopper: A Moving Target Defense with IPv6. In 4th Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb 2022).Google ScholarGoogle Scholar
  73. Luigi Rizzo. 2000. pgmcc: a TCP-friendly single-rate multicast congestion control scheme. ACM SIGCOMM Computer Communication Review 30, 4 (2000), 17--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Jerome H Saltzer, David P Reed, and David D Clark. 1984. End-to-end arguments in system design. ACM Transactions on Computer Systems (TOCS) 2, 4 (1984), 277--288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. P. Savola and B. Haberman. 2004. Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address. RFC 3956 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  76. Joao Luis Sobrinho, Laurent Vanbever, Franck Le, and Jennifer Rexford. 2014. Distributed Route Aggregation on the Global Network. In ACM CoNEXT 2014. Sydney, Australia.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. 2000. Stream Control Transmission Protocol. RFC 2960 (Proposed Standard). Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja Feldmann, Cristel Pelsser, Georgios Smaragdakis, and Randy Bush. 2018. BGP communities: Even more worms in the routing can. In Proceedings of the Internet Measurement Conference 2018. 279--292.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. M. Tuexen, R. Stewart, R. Jesup, and S. Loreto. 2017. Datagram Transport Layer Security (DTLS) Encapsulation of SCTP Packets. RFC 8261 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  80. Pier Luigi Ventre, Stefano Salsano, Marco Polverini, Antonio Cianfrani, Ahmed Abdelsalam, Clarence Filsfils, Pablo Camarillo, and Francois Clad. 2020. Segment Routing: a comprehensive survey of research activities, standardization efforts, and implementation results. IEEE Communications Surveys & Tutorials 23, 1 (2020), 182--221.Google ScholarGoogle ScholarCross RefCross Ref
  81. Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe, and Ralf Steinmetz. 2018. Multipath QUIC: A deployable multipath transport protocol. In 2018 IEEE International Conference on Communications (ICC). IEEE, 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  82. Jörg Widmer and Mark Handley. 2001. Extending equation-based congestion control to multicast applications. In Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. 275--285.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. IJ. Wijnands (Ed.), E. Rosen (Ed.), A. Dolganow, T. Przygienda, and S. Aldrin. 2017. Multicast Using Bit Index Explicit Replication (BIER). RFC 8279 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  84. IJ. Wijnands (Ed.), E. Rosen (Ed.), A. Dolganow, J. Tantsura, S. Aldrin, and I. Meilik. 2018. Encapsulation for Bit Index Explicit Replication (BIER) in MPLS and Non-MPLS Networks. RFC 8296 (Proposed Standard). Google ScholarGoogle ScholarCross RefCross Ref
  85. Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leveraging eBPF for programmable network functions with IPv6 Segment Routing. In Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies. 67--72.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The multiple roles that IPv6 addresses can play in today's internet

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGCOMM Computer Communication Review
        ACM SIGCOMM Computer Communication Review  Volume 52, Issue 3
        July 2022
        27 pages
        ISSN:0146-4833
        DOI:10.1145/3561954
        Issue’s Table of Contents

        Copyright © 2022 Copyright is held by the owner/author(s)

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 September 2022

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader