1932

Abstract

Human accelerated regions (HARs) are the fastest-evolving sequences in the human genome. When HARs were discovered in 2006, their function was mysterious due to scant annotation of the noncoding genome. Diverse technologies, from transgenic animals to machine learning, have consistently shown that HARs function as gene regulatory enhancers with significant enrichment in neurodevelopment. It is now possible to quantitatively measure the enhancer activity of thousands of HARs in parallel and model how each nucleotide contributes to gene expression. These strategies have revealed that many human HAR sequences function differently than their chimpanzee orthologs, though individual nucleotide changes in the same HAR may have opposite effects, consistent with compensatory substitutions. To fully evaluate the role of HARs in human evolution, it will be necessary to experimentally and computationally dissect them across more cell types and developmental stages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071819-103933
2022-11-30
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-071819-103933.html?itemId=/content/journals/10.1146/annurev-genet-071819-103933&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aldea D, Atsuta Y, Kokalari B, Schaffner SF, Prasasya RD et al. 2021. Repeated mutation of a developmental enhancer contributed to human thermoregulatory evolution. PNAS 118:e2021722118
    [Google Scholar]
  2. 2.
    Bae BI, Jayaraman D, Walsh CA. 2015. Genetic changes shaping the human brain. Dev. Cell 32:423–34
    [Google Scholar]
  3. 3.
    Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE et al. 2007. Fast-evolving noncoding sequences in the human genome. Genome Biol. 8:R118
    [Google Scholar]
  4. 4.
    Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T et al. 2015. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25:772–79
    [Google Scholar]
  5. 5.
    Burbano HA, Green RE, Maricic T, Lalueza-Fox C, de la Rasilla M et al. 2012. Analysis of human accelerated DNA regions using archaic hominin genomes. PLOS ONE 7:e32877
    [Google Scholar]
  6. 6.
    Bush EC, Lahn BT. 2008. A genome-wide screen for noncoding elements important in primate evolution. BMC Evol. Biol. 8:17
    [Google Scholar]
  7. 7.
    Capra JA, Erwin GD, McKinsey G, Rubenstein JL, Pollard KS. 2013. Many human accelerated regions are developmental enhancers. Philos. Trans. R. Soc. B 368:20130025
    [Google Scholar]
  8. 8.
    Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi L et al. 2022. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50:D165–73
    [Google Scholar]
  9. 9.
    Chen KM, Wong AK, Troyanskaya OG, Zhou J. 2022. A sequence-based global map of regulatory activity for deciphering human genetics. Nat. Genet. 54940–49
  10. 10.
    Chu XY, Quan Y, Zhang HY. 2020. Human accelerated genome regions with value in medical genetics and drug discovery. Drug Discov. Today 25:821–27
    [Google Scholar]
  11. 11.
    Cotney J, Leng J, Yin J, Reilly SK, DeMare LE et al. 2013. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154:185–96
    [Google Scholar]
  12. 12.
    Crisci JL, Wong A, Good JM, Jensen JD. 2011. On characterizing adaptive events unique to modern humans. Genome Biol. Evol. 3:791–98
    [Google Scholar]
  13. 13.
    Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA et al. 2016. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167:341–54.e12
    [Google Scholar]
  14. 14.
    Doan RN, Shin T, Walsh CA. 2018. Evolutionary changes in transcriptional regulation: insights into human behavior and neurological conditions. Annu. Rev. Neurosci. 41:185–206
    [Google Scholar]
  15. 15.
    Dong X, Wang X, Zhang F, Tian W. 2016. Genome-wide identification of regulatory sequences undergoing accelerated evolution in the human genome. Mol. Biol. Evol. 33:2565–75
    [Google Scholar]
  16. 16.
    Duret L, Galtier N. 2009. Comment on “Human-specific gain of function in a developmental enhancer. .” Science 323:714
    [Google Scholar]
  17. 17.
    Dutrow EV, Emera D, Yim K, Uebbing S, Kocher AA et al. 2022. Modeling uniquely human gene regulatory function via targeted humanization of the mouse genome. Nat. Commun. 13:304
    [Google Scholar]
  18. 18.
    Erwin GD, Oksenberg N, Truty RM, Kostka D, Murphy KK et al. 2014. Integrating diverse datasets improves developmental enhancer prediction. PLOS Comput. Biol. 10:e1003677
    [Google Scholar]
  19. 19.
    Franchini LF, Pollard KS. 2015. Genomic approaches to studying human-specific developmental traits. Development 142:3100–12
    [Google Scholar]
  20. 20.
    Franchini LF, Pollard KS. 2017. Human evolution: the non-coding revolution. BMC Biol. 15:89
    [Google Scholar]
  21. 21.
    Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway L, Beer MA. 2016. gkmSVM: an R package for gapped-kmer SVM. Bioinformatics 32:2205–7
    [Google Scholar]
  22. 22.
    Girskis KM, Stergachis AB, DeGennaro EM, Doan RN, Qian X et al. 2021. Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron 109:3239–51.e7
    [Google Scholar]
  23. 23.
    Gittelman RM, Hun E, Ay F, Madeoy J, Pennacchio L et al. 2015. Comprehensive identification and analysis of human accelerated regulatory DNA. Genome Res. 25:1245–55
    [Google Scholar]
  24. 24.
    Haygood R, Babbitt CC, Fedrigo O, Wray GA. 2010. Contrasts between adaptive coding and noncoding changes during human evolution. PNAS 107:7853–57
    [Google Scholar]
  25. 25.
    Holloway AK, Begun DJ, Siepel A, Pollard KS. 2008. Accelerated sequence divergence of conserved genomic elements in Drosophila melanogaster. Genome Res. 18:1592–601
    [Google Scholar]
  26. 26.
    Holloway AK, Bruneau BG, Sukonnik T, Rubenstein JL, Pollard KS. 2016. Accelerated evolution of enhancer hotspots in the mammal ancestor. Mol. Biol. Evol. 33:1008–18
    [Google Scholar]
  27. 27.
    Hu Z, Sackton TB, Edwards SV, Liu JS. 2019. Bayesian detection of convergent rate changes of conserved noncoding elements on phylogenetic trees. Mol. Biol. Evol. 36:1086–100
    [Google Scholar]
  28. 28.
    Hubisz MJ, Pollard KS. 2014. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr. Opin. Genet. Dev. 29:15–21
    [Google Scholar]
  29. 29.
    Inoue F, Ahituv N. 2015. Decoding enhancers using massively parallel reporter assays. Genomics 106:159–64
    [Google Scholar]
  30. 30.
    Jagoda E, Xue JR, Reilly SK, Dannemann M, Racimo F et al. 2022. Detection of Neanderthal adaptively introgressed genetic variants that modulate reporter gene expression in human immune cells. Mol. Biol. Evol. 39:msab304
    [Google Scholar]
  31. 31.
    Jin Y, Gittelman RM, Lu Y, Liu X, Li MD et al. 2018. Evolution of DNAase I hypersensitive sites in MHC regulatory regions of primates. Genetics 209:579–89
    [Google Scholar]
  32. 32.
    Jones B. 2015. Becoming human—identifying human accelerated regulatory DNA. Nat. Rev. Genet. 16:439
    [Google Scholar]
  33. 33.
    Kamm GB, Pisciottano F, Kliger R, Franchini LF. 2013. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol. Biol. Evol. 30:1088–102
    [Google Scholar]
  34. 34.
    Kampmann M. 2020. CRISPR-based functional genomics for neurological disease. Nat. Rev. Neurol. 16:465–80
    [Google Scholar]
  35. 35.
    Katzman S, Kern AD, Pollard KS, Salama SR, Haussler D. 2010. GC-biased evolution near human accelerated regions. PLOS Genet. 6:e1000960
    [Google Scholar]
  36. 36.
    King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:107–16
    [Google Scholar]
  37. 37.
    Kitts A, Sherry S 2011. The Single Nucleotide Polymorphism Database (dbSNP) of nucleotide sequence variation. The NCBI Handbook J McEntyre, J Ostell Bethesda, MD: US Natl. Cent. Biotechnol. Inf.
    [Google Scholar]
  38. 38.
    Kosiol C, Vinař T, da Fonseca RR, Hubisz MJ, Bustamante CD et al. 2008. Patterns of positive selection in six mammalian genomes. PLOS Genet. 4:e1000144
    [Google Scholar]
  39. 39.
    Kostka D, Hahn MW, Pollard KS. 2010. Noncoding sequences near duplicated genes evolve rapidly. Genome Biol. Evol. 2:518–33
    [Google Scholar]
  40. 40.
    Kostka D, Holloway AK, Pollard KS. 2018. Developmental loci harbor clusters of accelerated regions that evolved independently in ape lineages. Mol. Biol. Evol. 35:2034–45
    [Google Scholar]
  41. 41.
    Kostka D, Hubisz MJ, Siepel A, Pollard KS. 2012. The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol. Biol. Evol. 29:1047–57
    [Google Scholar]
  42. 42.
    Lee KS, Bang H, Choi JK, Kim K. 2020. Accelerated evolution of the regulatory sequences of brain development in the human genome. Mol. Cells 43:331–39
    [Google Scholar]
  43. 43.
    Lee KS, Chatterjee P, Choi EY, Sung MK, Oh J et al. 2018. Selection on the regulation of sympathetic nervous activity in humans and chimpanzees. PLOS Genet. 14:e1007311
    [Google Scholar]
  44. 44.
    Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. 2018. Human accelerated regions and other human-specific sequence variations in the context of evolution and their relevance for brain development. Genome Biol. Evol. 10:166–88
    [Google Scholar]
  45. 45.
    Li S, Hannenhalli S, Ovcharenko I. 2021. De novo human brain enhancers created by single nucleotide mutations. bioRxiv 451055. https://doi.org/10.1101/2021.07.04.451055
    [Crossref]
  46. 46.
    Libbrecht MW, Chan RCW, Hoffman MM. 2021. Segmentation and genome annotation algorithms for identifying chromatin state and other genomic patterns. PLOS Comput. Biol. 17:e1009423
    [Google Scholar]
  47. 47.
    Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:476–82
    [Google Scholar]
  48. 48.
    Mattioli K, Oliveros W, Gerhardinger C, Andergassen D, Maass PG et al. 2020. Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biol. 21:210
    [Google Scholar]
  49. 49.
    McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD et al. 2011. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471:216–19
    [Google Scholar]
  50. 50.
    Minnoye L, Taskiran, II, Mauduit D, Fazio M, Van Aerschot L et al. 2020. Cross-species analysis of enhancer logic using deep learning. Genome Res. 30:1815–34
    [Google Scholar]
  51. 51.
    Noonan JP. 2009. Regulatory DNAs and the evolution of human development. Curr. Opin. Genet. Dev. 19:557–64
    [Google Scholar]
  52. 52.
    Norman AR, Ryu AH, Jamieson K, Thomas S, Shen Y et al. 2021. A human accelerated region is a Leydig cell GLI2 enhancer that affects male-typical behavior. bioRxiv 428524. https://doi.org/10.1101/2021.01.27.428524
    [Crossref]
  53. 53.
    Oksenberg N, Stevison L, Wall JD, Ahituv N. 2013. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLOS Genet. 9:e1003221
    [Google Scholar]
  54. 54.
    Pollard KS, Salama SR, King B, Kern AD, Dreszer T et al. 2006. Forces shaping the fastest evolving regions in the human genome. PLOS Genet. 2:e168
    [Google Scholar]
  55. 55.
    Pollard KS, Salama SR, Lambert N, Lambot M-A, Coppens S et al. 2006. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443:167–72
    [Google Scholar]
  56. 56.
    Prabhakar S, Noonan JP, Paabo S, Rubin EM. 2006. Accelerated evolution of conserved noncoding sequences in humans. Science 314:786
    [Google Scholar]
  57. 57.
    Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I et al. 2015. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163:68–83
    [Google Scholar]
  58. 58.
    Quang D, Xie X. 2016. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44:e107
    [Google Scholar]
  59. 59.
    Reilly SK, Noonan JP. 2016. Evolution of gene regulation in humans. Annu. Rev. Genom. Hum. Genet. 17:45–67
    [Google Scholar]
  60. 60.
    Reilly SK, Yin J, Ayoub AE, Emera D, Leng J et al. 2015. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347:1155–59
    [Google Scholar]
  61. 61.
    Ritter DI, Li Q, Kostka D, Pollard KS, Guo S, Chuang JH. 2010. The importance of being cis: evolution of orthologous fish and mammalian enhancer activity. Mol. Biol. Evol. 27:2322–32
    [Google Scholar]
  62. 62.
    Silver DL. 2016. Genomic divergence and brain evolution: how regulatory DNA influences development of the cerebral cortex. Bioessays 38:162–71
    [Google Scholar]
  63. 63.
    Song M, Pebworth M-P, Yang X, Abnousi A, Fan C et al. 2020. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587:644–49
    [Google Scholar]
  64. 64.
    Sumiyama K, Saitou N. 2011. Loss-of-function mutation in a repressor module of human-specifically activated enhancer HACNS1. Mol. Biol. Evol. 28:3005–7
    [Google Scholar]
  65. 65.
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76
    [Google Scholar]
  66. 66.
    Uebbing S, Gockley J, Reilly SK, Kocher AA, Geller E et al. 2021. Massively parallel discovery of human-specific substitutions that alter enhancer activity. PNAS 118:e2007049118
    [Google Scholar]
  67. 67.
    Vermunt MW, Tan SC, Castelijns B, Geeven G, Reinink P et al. 2016. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat. Neurosci. 19:494–503
    [Google Scholar]
  68. 68.
    Visel A, Minovitsky S, Dubchak I, Pennacchio LA. 2007. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35:D88–92
    [Google Scholar]
  69. 69.
    Wang Y, Jaime-Lara RB, Roy A, Sun Y, Liu X, Joseph PV 2021. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models. BMC Res. Notes 14:104
    [Google Scholar]
  70. 70.
    Weiss CV, Harshman L, Inoue F, Fraser HB, Petrov DA et al. 2021. The cis-regulatory effects of modern human-specific variants. eLife 10:e63713
    [Google Scholar]
  71. 71.
    Whalen S, Inoue F, Ryu H, Fair T, Markenscoff-Papadimitriou E et al. 2022. Machine-learning dissection of Human Accelerated Regions in primate neurodevelopment. bioRxiv 256313. https://doi.org/10.1101/256313
    [Crossref]
  72. 72.
    Won H, Huang J, Opland CK, Hartl CL, Geschwind DH. 2019. Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nat. Commun. 10:2396
    [Google Scholar]
  73. 73.
    Xu K, Schadt EE, Pollard KS, Roussos P, Dudley JT. 2015. Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions. Mol. Biol. Evol. 32:1148–60
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071819-103933
Loading
/content/journals/10.1146/annurev-genet-071819-103933
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error