Skip to main content
Log in

Ionic Liquids, an Asset in Extraction Techniques–a Comprehensive Review

  • REVIEW ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Ever since the discovery of the first “Ionic Liquid” (ethyl ammonium nitrate) by Paul Walden in 1914, it has always been an intriguing scientific area for scientists worldwide. Over the past two decades, ionic liquids have received significant attention and are being extensively researched upon. The amount of research carried out in this particular field has increased exponentially and the trend is likely to continue given the tough advantages possessed by ionic liquids. Ionic liquids are being investigated and studied in a plethora of fields some of which include chemical engineering, extraction chemistry, medicinal chemistry, environmental science, material science and many more. Conventionally, volatile organic solvents have been the frontrunner as the choice of solvent in the extraction and synthesizing processes. However, these solvents have a detrimental impact on the environment and often result in toxic byproducts. Ionic liquids as an alternative to these solvents possess several attractive and unique features such as non-volatility, non-flammability, low nucleophilicity and several others that make ionic liquids as “Green solvents” the most suitable and ideal substitute. To assess and explore the potentiality of ionic liquids as an asset in extraction techniques, there arises a need for a consolidated report that elucidates the capabilities of ionic liquids. In this review, an attempt is made to compile all the applications of ionic liquids as an extractant in several fields to fill all the knowledge gaps for the professionals from the science world to give a verdict and potentially overcome all the shortcomings and pave a way towards a sustainable and green future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hallett, J.P., and Welton, T., Chem. Rev., 2011, vol. 111, no. 5, p. 3508.

    Article  CAS  PubMed  Google Scholar 

  2. Bini, R., Chiappe, C., Duce, C., Micheli, A., Solaro, R., Starita, A., and Tiné, M.R., Green Chem., 2008, vol. 10, p. 306.

    Article  CAS  Google Scholar 

  3. Bermúdez, M.D., Jiménez, A.E., Sanes, J., and Carrión, F.J., Molecules, 2009, vol. 14, p. 2888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rogers, R.D., Brennecke, J.F., and Seddon, K.R., Ionic Liquids: Not Just Solvents Anymore, ACS Symp. Ser., Washington, DC: Oxford University Press, 2007.

    Google Scholar 

  5. Chiu, Y.H. and Dressler, R.A., ACS Symp. Ser., 2007, vol. 975, p. 138.

    Article  CAS  Google Scholar 

  6. Abbott, A.P., McKenzie, K.J., and Ryder, K.S., ACS Symp. Ser., 2007, vol. 975, p. 186.

    Article  CAS  Google Scholar 

  7. Hallett, J.P., Jessop, P.G., Eckert, C.A., and Liotta, C.L., ACS Symp. Ser., 2007, vol. 975, p. 198.

    Article  CAS  Google Scholar 

  8. Zakeeruddin, S.M. and Grätzel, M., Adv. Funct. Mater., 2009, vol. 19, p. 2187.

    Article  CAS  Google Scholar 

  9. Hough, W.L. and Rogers, R.D., Bull. Chem. Soc. Jpn., 2007, vol. 80, p. 2262.

    Article  CAS  Google Scholar 

  10. Häckl, K. and Kunz, W., Comptes Rendus Chim., 2018, vol. 21, p. 572.

    Article  CAS  Google Scholar 

  11. Saleh, H.E-D.M. and Koller, M., in Green Chemistry, IntechOpen, 2018.

    Book  Google Scholar 

  12. Capello, C., Fischer, U., Hungerbuhler, K., Green Chem., 2007, vol. 9, p. 927.

    Article  CAS  Google Scholar 

  13. Anastas, P. and Eghbali, N., Chem. Soc. Rev., 2010, vol. 39, p. 301.

    Article  CAS  PubMed  Google Scholar 

  14. Elayadi, F., Boumya, W., Achak, M., Chhiti, Y., Alaoui, F.E.M., Barka, N., and Adlouni, C.E., Environ. Challenges, 2021, vol. 4, 100184.

  15. Cao, Y., Yao, S., Wang, X., Peng, Q., and Song, H., in Handbook of Ionic Liquids: Properties, Applications and Hazards, New York: Nova, 2012, p. 145.

    Google Scholar 

  16. McDaniel, J.G. and Yethiraj, A., J. Phys. Chem. B, 2019, vol. 123, p. 3499.

    Article  CAS  PubMed  Google Scholar 

  17. Singh, S. and Savoy, A., J. Mol. Liq., 2019, p. 112038.

  18. Greaves, T.L, Weerawardena, A., Fong, C., Krodkiewska, I., and Drummond, C.J., J. Phys. Chem. B, 2006, vol. 110, p. 22479.

    Article  CAS  PubMed  Google Scholar 

  19. Nilsson-Hallén, J., Ahlström, B., Marczewski, M., and Johansson, P., Front. Chem., 2019, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  20. Chen, Y. and Mu, T., Green Chem. Eng., 2021, vol. 2, p. 174.

    Google Scholar 

  21. Gosar, A., Hussain, S., Shaikh, T., and Joglekar, A., Trends Pharm. Nanotechnol., 2019, vol. 1, p. 28.

    Google Scholar 

  22. Wilkes, J.S., J. Mol. Catal. A: Chem., 2004, vol. 214, p. 11.

    Article  CAS  Google Scholar 

  23. Valderrama, J.O. and Campusano, R.A., C. R. Chim., 2016, vol. 19, p. 654.

    Article  CAS  Google Scholar 

  24. Wang, J., Li, Z., Li, C., and Wang, Z., Ind. Eng. Chem. Res., 2010, vol. 49, p. 4420.

    Article  CAS  Google Scholar 

  25. Montalbán, M.G., Collado-González, M., Díaz-Baños, F.G., and Víllora, G., in Progress and Developments in Ionic Liquids, Handy, S., Ed., InTech, 2017, p. 339

    Google Scholar 

  26. Ludwig, R. and Kragl, U., Angew. Chem., Int. Ed., 2007, vol. 46, p. 6582.

    Article  CAS  Google Scholar 

  27. Petkovic, M., Seddon, K.R., Rebelo, L.P.N., and Pereira, C.S., Chem. Soc. Rev., 2011, vol. 40, p. 1383.

    Article  CAS  PubMed  Google Scholar 

  28. Hameed, N. and Guo, Q., Carbohydr. Polym., 2009, vol. 78, p. 999.

    Article  CAS  Google Scholar 

  29. Earle, M.J. and Seddon, K.R., Pure Appl. Chem., 2000, vol. 72, p. 1391.

    Article  CAS  Google Scholar 

  30. Sui, X., Liu, T., Liu, J., Zhang, J., Zhang, H., Wang, H., and Yang, Y., Ultrason. Sonochem., 2020, vol. 69, p. 105263.

  31. Valderrama, J.O., Cardona, L.F., and Rojas, R.E., Fluid Phase Equilib., 2019, vol. 497, p. 164.

    Article  CAS  Google Scholar 

  32. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., and Rogers, R.D., Green Chem., 2001, vol. 3, p. 156.

    Article  CAS  Google Scholar 

  33. Ries, L.A.S., Amaral, F.A., Matos, K., Martini, E.M.A., de Souza, M.O., and de Souza, R.F., Polyhedron, 2008, vol. 27, p. 3287.

    Article  CAS  Google Scholar 

  34. Cai, C., Hanada, T., Fajar, A.T.N., and Goto, M., Desalination, 2021, vol. 509, p. 115073.

  35. Miao, L., Song, Z., Zhu, D., Gan, L., and Liu, M., Energy Fuels, 2021, vol. 35, no. 10, p. 8443.

    Article  CAS  Google Scholar 

  36. Gong, K., Wang, H.L., Fang, D., and Liu, Z.L., Catal. Commun., 2008, vol. 9, p. 650.

    Article  CAS  Google Scholar 

  37. Patel, D.D. and Lee, J., Chem. Rec., 2012, vol. 12, p. 329.

    Article  CAS  PubMed  Google Scholar 

  38. Plechkova, N.V. and Seddon, K.R., Chem. Soc. Rev., 2008, vol. 37, p. 123.

    Article  CAS  PubMed  Google Scholar 

  39. Tait, B.K., Solvent Extr. Ion Exch., 1992, vol. 10, p. 799.

    Article  CAS  Google Scholar 

  40. Wang, L.Y., Guo, Q.J., and Lee, M.S., Sep. Purif. Technol., 2019, vol. 210, p. 292.

    Article  CAS  Google Scholar 

  41. Kim, B.K., Lee, E.J., Kang, Y., and Lee, J.J., J. Ind. Eng. Chem., 2018, vol. 61, p. 388.

    Article  CAS  Google Scholar 

  42. Anderson, J.L. and Armstrong, D.W., Anal. Chem., 2003, vol. 75, p. 4851.

    Article  CAS  PubMed  Google Scholar 

  43. Berthod, A., Ruiz-Ángel, M.J., and Carda-Broch, S., J. Chromatogr. A, 2018, vol. 1559, p. 2.

    Article  CAS  PubMed  Google Scholar 

  44. Endres, F., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 1648.

    Article  CAS  PubMed  Google Scholar 

  45. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., and Scrosati, B., Nat. Mater., 2009, vol. 8, p. 621.

    Article  CAS  PubMed  Google Scholar 

  46. Qureshi, Z.S., Deshmukh, K.M., and Bhanage, B.M., Clean Technol. Environ. Policy, 2014, vol. 16, p. 1487.

    Article  Google Scholar 

  47. Sawant, A.D., Raut, D.G., Darvatkar, N.B., and Salunkhe, M.M., Green Chem. Lett. Rev., 2011, vol. 4, p. 41.

    Article  CAS  Google Scholar 

  48. Rout, A., Venkatesan, K.A., Srinivasan, T.G., and Vasudeva, R.P.R., Sep. Purif. Technol., 2012, vol. 95, p. 26.

    Article  CAS  Google Scholar 

  49. Olivier-Bourbigou, H., Magna, L., and Morvan, D., Appl. Catal., A, 2010, vol. 373, p. 1.

  50. Welton, T., Coord. Chem. Rev., 2004, vol. 248, p. 2459.

    Article  CAS  Google Scholar 

  51. Dietz, M.L., Sep. Sci. Technol., 2006, vol. 41, p. 2047.

    Article  CAS  Google Scholar 

  52. Faisal, M., and Saeed, A., in Advanced Green Sustainable Chemistry, 2020, p. 143.

    Google Scholar 

  53. Rodríguez, O., Alguacil, F.J., Baquero, E.E., García-Díaz, I., Fernández, P., Sotillo, B. and López, F.A., RSC Adv., 2020, vol. 10, p. 21406.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kabangu, M.J., in Built Environment, 2014, p. 1.

    Google Scholar 

  55. Asrami, M.R., Tran, N.N., Nigam, K.D.P., and Hessel, V., Sep. Purif. Technol., 2021, vol. 262, p. 118289.

  56. Hidayah, N.N. and Abidin, S.Z., C. R. Chim., 2019, vol. 22, p. 728.

    Article  CAS  Google Scholar 

  57. Kuzmina, O., Symianakis, E., Godfrey, D., Albrecht, T., and Welton, T., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 21556.

    Article  CAS  PubMed  Google Scholar 

  58. Volia, M.F., Tereshatov, E.E., Boltoeva, M., and Folden, C.M., New J. Chem., 2020, vol. 44, no. 6, p. 2527.

    Article  CAS  Google Scholar 

  59. Paiva, A.P. and Nogueira, C.A., Waste and Biomass Valorization, 2021, vol. 12, p. 1725.

    Article  CAS  Google Scholar 

  60. Visser, A.E., Swatloski, R.P., Reichert, W.M., Griffin, S.T., and Rogers, R.D., Ind. Eng. Chem. Res., 2000, vol. 39, p. 3596.

    Article  CAS  Google Scholar 

  61. Poole, C.F. and Poole, S.K., J. Chromatogr. A, 2010, vol. 1217, p. 2268.

    Article  CAS  PubMed  Google Scholar 

  62. Gabrić, B., Sander, A., Bubalo, M.C., and Macut, D., Sci. World J., 2013, vol. 2013, p. 512953.

  63. Kubota, F. and Goto, M., Solvent Extr. Res. Dev., 2006, vol. 13, p. 23.

    CAS  Google Scholar 

  64. de Oliveira, N.S., da Carlos, A.L.S., Mattedi, S., Soares, C.M.F., Souza, R.L., Fricks, A.T., and Lima, Á.S., Chem. Eng. Trans., 2018, vol. 64, p. 49.

    Google Scholar 

  65. Zhang, D., Deng, Y., and Chen, J., Sep. Sci. Technol., 2010, vol. 45, p. 63.

    Google Scholar 

  66. Vijayaraghavan, R., Vedaraman, N., Surianarayanan, M., and MacFarlane, D.R., Talanta, 2006, vol. 69, p. 1059.

    Article  CAS  PubMed  Google Scholar 

  67. Li, C., Xin, B., and Xu, W., J. Chem. Technol. Biotechnol., 2007, vol. 82, p. 196.

    Article  CAS  Google Scholar 

  68. Matsumoto, M., Mochiduki, K., Fukunishi, K., and Kondo, K., Sep. Purif. Technol., 2004, vol. 40, p. 97.

    Article  CAS  Google Scholar 

  69. Khodadoust, A.P, Chandrasekaran, S., and Dionysiou, D.D., Environ. Sci. Technol., 2006, vol. 40, p. 2339.

    Article  CAS  PubMed  Google Scholar 

  70. Jing-ying, M., Xiao-ping, H., and Jian-yi, Z., Procedia Environ. Sci., 2012, vol. 12, p. 225.

    Article  Google Scholar 

  71. Pereiro, A.B., and Deive, F.J., Sep. Sci. Technol., 2012, vol. 47, p. 377.

    Article  CAS  Google Scholar 

  72. Zhang, J., Huang, C., Chen, B., Ren, P., and Lei, Z., Energy Fuels, 2007, vol. 21, p. 1724.

    Article  CAS  Google Scholar 

  73. Rogers, R.D., Willauer, H.D., Griffin, S.T., and Huddleston, J.G., J. Chromatogr. B.: Biomed. Sci. Appl., 1998, vol. 711, p. 255.

    Article  CAS  Google Scholar 

  74. Fan, J., Fan, Y., Pei, Y., Wu, K., Wang, J., and Fan, M., Sep. Purif. Technol., 2008, vol. 61, p. 324.

    Article  CAS  Google Scholar 

  75. Deng, N., Li, M., Zhao, L., Lu, C., de Rooy, S.L., and Warner, I.M., J. Hazard. Mater., 2011, vol. 192, p. 1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Egorov, V.M., Smirnova, S.V., and Pletnev, I.V., Sep. Purif. Technol., 2008, vol. 63, p. 710.

    Article  CAS  Google Scholar 

  77. Usuki, T. and Yoshizawa-Fujita, M., Adv. Biochem. Eng. Biotechnol., 2019, vol. 168, p. 227.

    CAS  PubMed  Google Scholar 

  78. Du, F.Y., Xiao, X.H., Luo, X.J., and Li, G.K., Talanta, 2009, vol. 78, p. 1177.

    Article  CAS  PubMed  Google Scholar 

  79. Swatloski, R.P., Spear, S.K., Holbrey, J.D., and Rogers, R.D., J. Am. Chem. Soc., 2002, vol. 124, p. 4974.

    Article  CAS  PubMed  Google Scholar 

  80. Du, F.Y., Xiao, X.H., and Li, G.K., J. Chromatogr. A, 2007, vol. 1140, p. 56.

    Article  CAS  PubMed  Google Scholar 

  81. Ma, W., Lu, Y., Hu, R., Chen, J., Zhang, Z., and Pan, Y., Talanta, 2007, vol. 80, p. 1292.

    Article  CAS  Google Scholar 

  82. Lu, Y., Ma, W., Hu, R., Dai, X., and Pan, Y., J. Chromatogr. A, 2008, vol. 1208, p. 42.

    Article  CAS  PubMed  Google Scholar 

  83. Bica, K., Gaertner, P., and Rogers, R.D., Green Chem., 2011, vol. 13, p. 1997.

    Article  CAS  Google Scholar 

  84. Ressmann, A.K., Gaertner, P., and Bica, K., Green Chem., 2011, vol. 13, p. 1442.

    Article  CAS  Google Scholar 

  85. Tan, Z., Li, Q., Wang, C., Zhou, W., Yang, Y., Wang, H., Yi, Y., and Li, F., Molecules, 2017, vol. 22, p. 1483

    Article  PubMed Central  CAS  Google Scholar 

  86. Li Q., Wu S., Wang C., Yi Y., Zhou W., Wang H., Li F. and Tan Z., rocess Biochem., 2017, vol. 58, p. 282.

  87. Kosmulski, M., Gustafsson, J., and Rosenholm, J.B., Thermochim. Acta, 2004, vol. 412, p. 47.

    Article  CAS  Google Scholar 

  88. Dong, B, Tang, J., Yonannes, A., and Yao, S., RSC Adv., 2018, vol. 8, p. 262.

    Article  CAS  Google Scholar 

  89. Li, L., Huang, M., Shao, J., and Lin, B., J. Pharm. Biomed. Anal., 2017, vol. 135, p. 61.

    Article  CAS  PubMed  Google Scholar 

  90. Dróżdż, P. and Pyrzynska, K., Nat. Prod. Res., 2019, vol. 33, p. 148.

    Article  PubMed  CAS  Google Scholar 

  91. Irfan, M., Moniruzzaman, M., Ahmad, T., Mandal, P.C., Bhattacharjee, S., and Abdullah, B., J. Mol. Liq., 2017, vol. 241, p. 270.

    Article  CAS  Google Scholar 

  92. Bernini, R., Mincione, E., Coratti, A., Fabrizi, G., and Battistuzzi, G., Tetrahedron, 2004, vol. 60, p. 967.

    Article  CAS  Google Scholar 

  93. Zhou, Y., Wu, D., Cai, P., Cheng, G., Huang, C., and Pan, Y., Molecules, 2015, vol. 20, p. 7683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, Z., Gu, H., and Yang, L., J. Chromatogr. A, 2015, vol. 1417, p. 8.

    Article  CAS  PubMed  Google Scholar 

  95. Dong, W., Yu, S., Deng, Y., and Pan, T., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2016, vol. 1008, p. 45.

    Article  CAS  Google Scholar 

  96. Tan, Z., Yi, Y., Wang, H., Zhou, W., and Wang, C., Molecules, 2016, vol. 21, p. 262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Patel, R., Kumari, M., and Khan, A.B., Appl. Biochem. Biotechnol., 2016, vol. 172, p. 3701.

    Article  CAS  Google Scholar 

  98. Mahmood, H. and Moniruzzaman, M., Biotechnol. J., 2019, vol. 14, p. 1.

    Article  CAS  Google Scholar 

  99. Sommer, J., Bromberger, B., Robben, C., Kalb, R., Rossmanith, P., and Mester, P.J., Sep. Purif. Technol., 2021, vol. 254, p. 117591.

  100. Louros, C.L.S., Cláudio, A.F.M., Neves, C.M.S.S., and Freire, M.G., Int. J. Mol. Sci., 2010, vol. 11, p. 1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, X., Wang, Y., Zeng, Q., Ding, X., and Chen, J., Analyst, 2013, vol. 138, p. 6445.

    Article  CAS  PubMed  Google Scholar 

  102. Lee, S.Y., Khoiroh, I., Ooi, C.W., Ling, T.C., and Show, P.L., Sep. Purif. Rev., 2017, vol. 46, p. 291.

    Article  CAS  Google Scholar 

  103. Dreyer, S. and Kragl, F., Biotechnol. Bioeng., 2008, vol. 99, p. 1416.

    Article  CAS  PubMed  Google Scholar 

  104. Deive, F.J., Rodríguez, A., Pereiro, A.B., Araújo, J.M.M., Longo, M.A., Coelho, M.A.Z., Lopes, J.N.C., Esperança, J.M.S.S., Rebelo, L.P.N., and Marrucho, I.M., Green Chem., 2011, vol. 13, p. 390.

    Article  CAS  Google Scholar 

  105. Deive, F.J., Rodríguez, A., Rebelo, L.P.N., and Marrucho, I., Sep. Purif. Technol., 2012, vol. 97, p. 205.

    Article  CAS  Google Scholar 

  106. Ventura, S., Sousa, S., Freire, M., Serafim, L., and Lima, A., J. Chromatogr. B.: Anal. Technol. Biomed. Life Sci., 2011, vol. 879, p. 2679.

    Article  CAS  Google Scholar 

  107. Tonova, K., Svinyarov, I., and Bogdanov, M., Mater. Methods Technol., 2015, vol. 9, p. 442.

    Google Scholar 

  108. Tonova, K. and Bogdanov, M., Sep. Sci. Technol., 2017, vol. 52, p. 812.

    Article  CAS  Google Scholar 

  109. Bezerra, R.P., Borba, F.K.S.L., Moreira, K.A., Lima-Filho, J.L., Porto, A.L.F., and Chaves, A.C., Braz. Arch. Biol. Technol., 2006, vol. 49, p. 547.

    Article  CAS  Google Scholar 

  110. El-Emam, R.S. and Özcan, H., J. Clean. Prod., 2019, vol. 220, p. 593.

    Article  CAS  Google Scholar 

  111. Rosatella, A.A., Branco, L.C., and Afonso, C.A.M., Green Chem., 2009, vol. 11, p. 1406.

    Article  CAS  Google Scholar 

  112. Neves, C.M.S.S., Figueiredo, M., Reis, P.M., Sousa, A.C.A., Cristóvão, A.C., Fiadeiro, M.B., Rebelo, L.P.N., Coutinho, J.A.P., Esperança, J.M.S.S., and Freire, M.G., Front. Chem., 2019, vol. 7, p. 459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. To, T.Q., Procter, K., Simmons, B.A., Subashchandrabose, S., and Atkin, R., Faraday Discuss., 2017, vol. 206, p. 93.

    Article  PubMed  Google Scholar 

  114. Shukla, S.K. and Mikkola, J.P., Front. Chem., 2020, vol. 8, p. 1219.

    Article  CAS  Google Scholar 

  115. Clark, K.D., Nacham, O., Yu, H., Li, T., Yamsek, M.M., Ronning, D.R., and Anderson, J.L., Anal. Chem., 2015, vol. 87, p. 1552.

    Article  CAS  PubMed  Google Scholar 

  116. Schindl, A., Hagen, M.L., Muzammal, S., Gunasekera, H.A.D., and Croft, A.K., Front. Chem., 2019, vol. 7, p. 347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bowers, A.N., Trujillo-Rodríguez, M.J., Farooq, M.Q., and Anderson, J.L., Anal. Bioanal. Chem., 2019, vol. 411, p. 7375.

    Article  CAS  PubMed  Google Scholar 

  118. Gough, C.R, Rivera-Galletti, A., Cowan, D.A., Salas-De La Cruz, D., and Hu, X., Molecules, 2020, vol. 25, p. 3362.

    Article  CAS  PubMed Central  Google Scholar 

  119. Khimji, I., Doan, K., Bruggeman, K., Huang, P.J., and Vajha, P., Chem. Commun., 2013, vol. 49, p. 4537.

    Article  CAS  Google Scholar 

  120. Martzy, R., Bica-Schröder, K., Pálvölgyi, Á.M., Kolm, C., Jakwerth, S., Kirschner, A.K.T., Sommer, R., Krska, R., Mach, R.L., Farnleitner, A.H., and Reischer, G. H., Sci. Rep., 2019, vol. 9, p. 13944.

    Article  CAS  Google Scholar 

  121. Smiatek, J., J. Phys.: Condens. Matter, 2017, vol. 29, p. 233001.

  122. Reslan, M. and Kayser, V., Biophys. Rev., 2018, vol. 10, p. 781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schröder, C., Top. Curr. Chem., 2017, vol. 375, p. 25.

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Rashtreeya Sikshana Samithi Trust, Principal RV College of Engineering, Bengaluru, and VTU, Belagavi, for encouragement and providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raviraj Kusanur.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajyaguru, Y.V., Patil, J.H. & Kusanur, R. Ionic Liquids, an Asset in Extraction Techniques–a Comprehensive Review. rev. and adv. in chem. 12, 107–122 (2022). https://doi.org/10.1134/S2634827622020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827622020040

Keywords:

Navigation