Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 16, 2022

Magnesium-rich intermetallic compounds RE3Ag4Mg12 (RE = Y, La–Nd, Sm–Dy, Yb) and AE3Ag4Mg12 (AE = Ca, Sr)

  • Maximilian Kai Reimann , Steffen Klenner , Josef Maximilian Gerdes , Michael Ryan Hansen and Rainer Pöttgen EMAIL logo

Abstract

The magnesium-rich intermetallic compounds RE3Ag4Mg12 (RE = Y, La–Nd, Sm–Dy, Yb) and AE3Ag4Mg12 (AE = Ca, Sr) were synthesized from the elements in sealed tantalum ampoules through heat treatment in an induction furnace. X-ray powder diffraction studies confirm the hexagonal Gd3Ru4Al12 type structure, space group P63/mmc. Three structures were refined from single crystal X-ray diffractometer data: a = 973.47(5), c = 1037.19(5) pm, wR2 = 0.0296, 660 F2 values, 30 variables for Gd3Ag3.82(1)Mg12.18(1), a = 985.27(9), c = 1047.34(9) pm, wR2 = 0.0367, 716 F2 values, 29 variables for Yb3Ag3.73(1)Mg12.27(1) and a = 992.41(8), c = 1050.41(8) pm, wR2 = 0.0373, 347 F2 values, 28 variables for Ca3Ag3.63(1)Mg12.37(1). Refinements of the occupancy parameters revealed substantial Ag/Mg mixing within the silver-magnesium substructure, a consequence of the Ag@Mg8 coordination. The alkaline earth and rare earth atoms build Kagome networks. Temperature dependent magnetic susceptibility measurements indicate diamagnetism/Pauli paramagnetism for the compounds with Ca, Sr, Y and YbII, while the others with the trivalent rare earth elements are Curie-Weiss paramagnets. Most compounds order antiferromagnetically at T N  = 4.4(1) K (RE = Pr), 34.6(1) K (RE = Gd) and 23.5(1) K (RE = Tb) while Eu3Ag4Mg12 is a ferromagnet (T C  = 19.1(1) K). 151Eu Mössbauer spectra confirm divalent europium (δ = −9.88(1) mm s−1). Full magnetic hyperfine field splitting (18.4(1) T) is observed at 6 K. Yb3Ag4Mg12 shows a single resonance in its 171Yb solid state NMR spectrum at 6991 ppm at 300 K indicating a strong, positive Knight shift.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720; https://doi.org/10.1016/j.jssc.2007.03.007.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar

3. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285; https://doi.org/10.1515/zkri-2013-1717.Search in Google Scholar

4. Ourane, B., Gaudin, E., Zouari, R., Couillaud, S., Bobet, J.-L. Inorg. Chem. 2013, 52, 13289; https://doi.org/10.1021/ic401911g.Search in Google Scholar PubMed

5. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Solid State Sci. 2009, 11, 801; https://doi.org/10.1016/j.solidstatesciences.2008.12.006.Search in Google Scholar

6. Linsinger, S., Eul, M., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1185; https://doi.org/10.1515/znb-2010-1002.Search in Google Scholar

7. Linsinger, S., Hoffmann, R.-D., Eul, M., Pöttgen, R. Z. Naturforsch. 2012, 67b, 219; https://doi.org/10.1515/znb-2012-0307.Search in Google Scholar

8. Li, Q., Luo, Q., Gu, Q.-F. J. Mater. Chem. A 2017, 5, 3848; https://doi.org/10.1039/c6ta10090b.Search in Google Scholar

9. Al Asmar, E., Tencé, S., Bobet, J.-L., Ourane, B., Nakhl, M., Zakhour, M., Gaudin, E. Inorg. Chem. 2018, 57, 14152; https://doi.org/10.1021/acs.inorgchem.8b02007.Search in Google Scholar PubMed

10. Egami, M., Abe, E. Scr. Mater. 2015, 98, 64; https://doi.org/10.1016/j.scriptamat.2014.11.013.Search in Google Scholar

11. Kishida, K., Nagai, K., Matsumoto, A., Yasuhara, A., Inui, H. Acta Mater. 2015, 99, 228; https://doi.org/10.1016/j.actamat.2015.08.004.Search in Google Scholar

12. Liu, Y., Cao, Y., Huang, L., Gao, M., Pan, H. J. Alloys Compd. 2011, 509, 675; https://doi.org/10.1016/j.jallcom.2010.08.157.Search in Google Scholar

13. De Negri, S., Solokha, P., Pavlyuk, V., Saccone, A. Intermetallics 2011, 19, 671; https://doi.org/10.1016/j.intermet.2011.01.007.Search in Google Scholar

14. Verbovytskyy, Y., Gonçalves, A. P. Solid State Sci. 2015, 40, 84; https://doi.org/10.1016/j.solidstatesciences.2015.01.006.Search in Google Scholar

15. Gladyshevskii, R. E., Strusievicz, O. R., Cenzual, K., Parthé, E. Acta Crystallogr. B 1993, 49, 474; https://doi.org/10.1107/s0108768192011510.Search in Google Scholar

16. Freccero, R., De Negri, S., Saccone, A., Solokha, P. Dalton Trans. 2020, 49, 12056; https://doi.org/10.1039/d0dt02359k.Search in Google Scholar PubMed

17. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133.Search in Google Scholar

18. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Search in Google Scholar

19. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

20. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar

21. Corel Corporation. Core1DRAW Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar

22. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

23. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

24. MacGregor, A. W., O’Dell, L. A., Schurko, R. W. J. Magn. Reson. 2011, 208, 103–113; https://doi.org/10.1016/j.jmr.2010.10.011.Search in Google Scholar PubMed

25. Meiboom, S., Gill, D. Rev. Sci. Instrum. 1958, 29, 688–691; https://doi.org/10.1063/1.1716296.Search in Google Scholar

26. Shrot, Y., Frydman, L. J. Magn. Reson. 2005, 172, 179–190; https://doi.org/10.1016/j.jmr.2004.09.024.Search in Google Scholar PubMed

27. van Meerten, S. G. J., Franssen, W. M. J., Kentgens, A. P. M. J. Magn. Reson. 2019, 301, 55–66; https://doi.org/10.1016/j.jmr.2019.02.006.Search in Google Scholar PubMed

28. Klenner, S., Reimann, M. K., Pöttgen, R. Z. Kristallogr. 2021, 236, 215; https://doi.org/10.1515/zkri-2021-2041.Search in Google Scholar

29. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

30. Shannon, R. D. Acta Crystallogr. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

31. Niermann, J., Jeitschko, W. Z. Anorg. Allg. Chem. 2002, 628, 2549; https://doi.org/10.1002/1521-3749(200211)628:11<2549::aid-zaac2549>3.0.co;2-x.10.1002/1521-3749(200211)628:11<2549::AID-ZAAC2549>3.0.CO;2-XSearch in Google Scholar

32. Pasturel, M., Tougait, O., Potel, M., Roisnel, T., Wochowski, K., Noël, H., Troć, R. J. Phys.: Condens. Matter 2009, 21, 125401; https://doi.org/10.1088/0953-8984/21/12/125401.Search in Google Scholar

33. Hoffmann, R.-D., Huppertz, H., Pöttgen, R. Solid State Sci. 2002, 4, 103; https://doi.org/10.1016/s1293-2558(01)01230-4.Search in Google Scholar

34. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

35. Owen, E. A., Preston, G. D. Phil. Mag. 1926, 2, 1266; https://doi.org/10.1080/14786442608564161.Search in Google Scholar

36. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

37. Pöttgen, R., Hoffmann, R.-D. Metall 2004, 58, 557.10.1093/fs/58.4.557Search in Google Scholar

38. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707; https://doi.org/10.1002/zaac.201200538.Search in Google Scholar

39. Kersting, M., Matar, S. F., Schwickert, C., Pöttgen, R. Z. Naturforsch. 2012, 67b, 61; https://doi.org/10.1515/znb-2012-0111.Search in Google Scholar

40. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

41. Ryan, D. H., Legros, A., Niehaus, O., Pöttgen, R., Cadogan, J. M., Flacau, R. J. Appl. Phys. 2015, 117, 17D108; https://doi.org/10.1063/1.4907239.Search in Google Scholar

42. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds. De Gruyter: Berlin, 2020.10.1515/9783110654929-021Search in Google Scholar

43. Johrendt, D., Kotzyba, G., Trill, H., Mosel, B. D., Eckert, H., Fickenscher, T., Pöttgen, R. J. Solid State Chem. 2002, 164, 201; https://doi.org/10.1006/jssc.2001.9460.Search in Google Scholar

44. Klenner, S., Reimann, M. K., Pöttgen, R. Z. Kristallogr. 2021, 236, 201; https://doi.org/10.1515/zkri-2021-2031.Search in Google Scholar

45. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174.10.1006/jssc.1998.7750Search in Google Scholar

46. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133.10.1039/b100055lSearch in Google Scholar

47. Klink, J. J., Brom, H. B. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 89–201.10.1016/S0079-6565(99)00020-5Search in Google Scholar

Received: 2022-07-27
Accepted: 2022-09-06
Published Online: 2022-09-16
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0048/html
Scroll to top button