Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 19, 2022

Adaptive extragradient methods for solving variational inequalities in real Hilbert spaces

  • Duong Viet Thong EMAIL logo , Xiao-Huan Li , Qiao-Li Dong , Hoang Van Thang and Luong Van Long

Abstract

The projection technique is a very important method and efficient for solving variational inequality problems. In this study, we developed the subgradient extragradient method for solving pseudomonotone variational inequality in real Hilbert spaces. Our first algorithm requires only computing one projection onto the feasible set per iteration and the strong convergence is proved without the prior knowledge of the Lipschitz constant as well as the sequentially weak continuity of the associated mapping. The second algorithm uses the linesearch procedure such that its convergence does not require the Lipschitz continuous condition of the variational inequality mapping. Finally, some numerical experiments are provided to demonstrate the advantages and efficiency of the proposed methods.

Mathematics Subject Classification (2010): 47H05; 47H07; 47H10; 54H25

Corresponding author: Duong Viet Thong, Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. Fichera, “Sul problema elastostatico di Signorini con ambigue condizioni al contorno,” Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., vol. 34, pp. 138–142, 1963.Search in Google Scholar

[2] G. Fichera, “Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno,” Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser., vol. 7, pp. 91–140, 1964.Search in Google Scholar

[3] A. S. Antipin, “On a method for convex programs using a symmetrical modification of the Lagrange function,” Ekonomika i Mat. Metody, vol. 12, pp. 1164–1173, 1976.Search in Google Scholar

[4] Y. Censor, A. Gibali, and S. Reich, “The subgradient extragradient method for solving variational inequalities in Hilbert space,” J. Optim. Theor. Appl., vol. 148, pp. 318–335, 2011. https://doi.org/10.1007/s10957-010-9757-3.Search in Google Scholar PubMed PubMed Central

[5] Y. Censor, A. Gibali, and S. Reich, “Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space,” Optim. Methods Software, vol. 26, pp. 827–845, 2011. https://doi.org/10.1080/10556788.2010.551536.Search in Google Scholar

[6] Y. Censor, A. Gibali, and S. Reich, “Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space,” Optimization, vol. 61, pp. 1119–1132, 2012. https://doi.org/10.1080/02331934.2010.539689.Search in Google Scholar

[7] Y. Censor, A. Gibali, and S. Reich, “Algorithms for the split variational inequality problem,” Numer. Algorithm., vol. 59, pp. 301–323, 2012. https://doi.org/10.1007/s11075-011-9490-5.Search in Google Scholar

[8] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, in Springer Series in Operations Research, vol. I, New York, Springer, 2003.10.1007/b97544Search in Google Scholar

[9] A. Gibali, S. Reich, and R. Zalas, “Outer approximation methods for solving variational inequalities in Hilbert space,” Optimization, vol. 66, pp. 417–437, 2017. https://doi.org/10.1080/02331934.2016.1271800.Search in Google Scholar

[10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, New York, Academic Press, 1980.Search in Google Scholar

[11] R. Kraikaew and S. Saejung, “Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces,” J. Optim. Theor. Appl., vol. 163, pp. 399–412, 2014. https://doi.org/10.1007/s10957-013-0494-2.Search in Google Scholar

[12] I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Berlin, Springer-Verlag, 2001.10.1007/978-3-642-56886-2Search in Google Scholar

[13] Y. V. Malitsky and V. V. Semenov, “A hybrid method without extrapolation step for solving variational inequality problems,” J. Global Optim., vol. 61, pp. 193–202, 2015. https://doi.org/10.1007/s10898-014-0150-x.Search in Google Scholar

[14] Y. V. Malitsky, “Projected reflected gradient methods for monotone variational inequalities,” SIAM J. Optim., vol. 25, pp. 502–520, 2015. https://doi.org/10.1137/14097238x.Search in Google Scholar

[15] D. V. Thong, N. T. Vinh, and Y. J. Cho, “A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems,” Opt. Lett., vol. 14, pp. 1157–1175, 2020. https://doi.org/10.1007/s11590-019-01391-3.Search in Google Scholar

[16] Y. B. Xiao, N. J. Huang, and Y. J. Cho, “A class of generalized evolution variational inequalities in Banach space,” Appl. Math. Lett., vol. 25, pp. 914–920, 2012. https://doi.org/10.1016/j.aml.2011.10.035.Search in Google Scholar

[17] Y. M. Wang, Y. B. Xiao, X. Wang, and Y. J. Cho, “Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems,” J. Nonlinear Sci. Appl., vol. 9, pp. 1178–1192, 2016. https://doi.org/10.22436/jnsa.009.03.44.Search in Google Scholar

[18] J. Yang and H. Liu, “A modified projected gradient method for monotone variational inequalities,” J. Optim. Theor. Appl., vol. 179, pp. 197–211, 2018. https://doi.org/10.1007/s10957-018-1351-0.Search in Google Scholar

[19] G. M. Korpelevich, “The extragradient method for finding saddle points and other problems,” Ekonomikai Matematicheskie Metody, vol. 12, pp. 747–756, 1976.Search in Google Scholar

[20] L. C. Ceng, N. Hadjisavvas, and N. C. Wong, “Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems,” J. Global Optim., vol. 46, pp. 635–646, 2010. https://doi.org/10.1007/s10898-009-9454-7.Search in Google Scholar

[21] P. E. Maingé, “A hybrid extragradient-viscosity method for monotone operators and fixed point problems,” SIAM J. Control Optim., vol. 47, pp. 1499–1515, 2008. https://doi.org/10.1137/060675319.Search in Google Scholar

[22] N. Nadezhkina and W. Takahashi, “Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings,” J. Optim. Theor. Appl., vol. 128, pp. 191–201, 2006. https://doi.org/10.1007/s10957-005-7564-z.Search in Google Scholar

[23] M. V. Solodov and B. F. Svaiter, “A new projection method for variational inequality problems,” SIAM J. Control Optim., vol. 37, pp. 765–776, 1999. https://doi.org/10.1137/s0363012997317475.Search in Google Scholar

[24] P. T. Vuong, “On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities,” J. Optim. Theor. Appl., vol. 176, pp. 399–409, 2018. https://doi.org/10.1007/s10957-017-1214-0.Search in Google Scholar PubMed PubMed Central

[25] P. T. Vuong and Y. Shehu, “Convergence of an extragradient-type method for variational inequality with applications to optimal control problems,” Numer. Algorithm., vol. 81, pp. 269–291, 2019. https://doi.org/10.1007/s11075-018-0547-6.Search in Google Scholar

[26] Y. Yao, G. Marino, and L. Muglia, “A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality,” Optimization, vol. 63, pp. 559–569, 2014. https://doi.org/10.1080/02331934.2012.674947.Search in Google Scholar

[27] F. Alvarez and H. Attouch, “An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping,” Set-Valued Anal., vol. 9, pp. 3–11, 2001. https://doi.org/10.1023/a:1011253113155.10.1023/A:1011253113155Search in Google Scholar

[28] R. I. Boţ, E. R. Csetnek, and P. T. Vuong, “The forward-backward-forward Method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces,” European J. Oper. Res., vol. 287, pp. 49–60, 2020.10.1016/j.ejor.2020.04.035Search in Google Scholar

[29] Q. L. Dong, Y. Y. Lu, and J. F. Yang, “The extragradient algorithm with inertial effects for solving the variational inequality,” Optimization, vol. 65, pp. 2217–2226, 2016. https://doi.org/10.1080/02331934.2016.1239266.Search in Google Scholar

[30] Q. L. Dong, H. B. Yuan, Y. J. Cho, and T.M. Rassias, “Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings,” Opt Lett., vol. 12, pp. 87–102, 2018. https://doi.org/10.1007/s11590-016-1102-9.Search in Google Scholar

[31] Q. L. Dong, Y. J. Cho, L. L. Zhong, and T.M. Rassias, “Inertial projection and contraction algorithms for variational inequalities,” J. Global Optim., vol. 70, pp. 687–704, 2018. https://doi.org/10.1007/s10898-017-0506-0.Search in Google Scholar

[32] D. V. Thong and D. V. Hieu, “Modified subgradient extragradient method for variational inequality problems,” Numer. Algorithm., vol. 79, pp. 597–610, 2018. https://doi.org/10.1007/s11075-017-0452-4.Search in Google Scholar

[33] P. E. Maingé, “Inertial iterative process for fixed points of certain quasi-nonexpansive mappings,” Set-Valued Anal., vol. 15, pp. 67–79, 2007. https://doi.org/10.1007/s11228-006-0027-3.Search in Google Scholar

[34] B. T. Polyak, “Some methods of speeding up the convergence of iterarive methods,” Zh. Vychisl. Mat. Mat. Fiz., vol. 4, pp. 1–17, 1964. https://doi.org/10.1016/0041-5553(64)90137-5.Search in Google Scholar

[35] A. Moudafi, “Viscosity approximation methods for fixed points problems,” J. Math. Anal. Appl., vol. 241, pp. 46–55, 2000. https://doi.org/10.1006/jmaa.1999.6615.Search in Google Scholar

[36] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, New York, Marcel Dekker, 1984.Search in Google Scholar

[37] S. V. Denisov, V. V. Semenov, and L. M. Chabak, “Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators,” Cybern. Syst. Anal., vol. 51, pp. 757–765, 2015. https://doi.org/10.1007/s10559-015-9768-z.Search in Google Scholar

[38] A. N. Iusem and M. Nasri, “Korpelevich’s method for variational inequality problems in Banach spaces,” J. Global Optim., vol. 50, pp. 59–76, 2011. https://doi.org/10.1007/s10898-010-9613-x.Search in Google Scholar

[39] S. Saejung and P. Yotkaew, “Approximation of zeros of inverse strongly monotone operators in Banach spaces,” Nonlinear Anal, vol. 75, pp. 742–750, 2012. https://doi.org/10.1016/j.na.2011.09.005.Search in Google Scholar

[40] H. Liu and J. Yang, “Weak convergence of iterative methods for solving quasimonotone variational inequalities,” Comput. Optim. Appl., vol. 77, pp. 491–508, 2020. https://doi.org/10.1007/s10589-020-00217-8.Search in Google Scholar

[41] R. W. Cottle and J. C. Yao, “Pseudo-monotone complementarity problems in Hilbert space,” J. Optim. Theor. Appl., vol. 75, pp. 281–295, 1992. https://doi.org/10.1007/bf00941468.Search in Google Scholar

[42] P. T. Harker and J. S. Pang, “A damped-Newton method for the linear complementarity problem,” in Computational Solution of Nonlinear Systems of Equations, Lectures in Appl. Math. 26, G. Allgower, and K. Georg, Eds., Providence, RI, AMS, 1990, pp. 265–284.Search in Google Scholar

[43] X. Hu and J. Wang, “Solving pseudo-monotone variational inequalities and pseudo-convex optimization problems using the projection neural network,” IEEE Trans. Neural Network., vol. 17, pp. 1487–1499, 2006. https://doi.org/10.1109/tnn.2006.879774.Search in Google Scholar

[44] S. Karamardian and S. Schaible, “Seven kinds of monotone maps,” J. Optim. Theor. Appl., vol. 66, pp. 37–46, 1990. https://doi.org/10.1007/bf00940531.Search in Google Scholar

[45] Y. V. Malitsky, “Golden ratio algorithms for variational inequalities,” Math. Program., vol. 184, pp. 383–410, 2020. https://doi.org/10.1007/s10107-019-01416-w.Search in Google Scholar

[46] Y. Shehu, Q. L. Dong, and D. Jiang, “Single projection method for pseudo-monotone variational inequality in Hilbert spaces,” Optimization, vol. 68, pp. 385–409, 2019. https://doi.org/10.1080/02331934.2018.1522636.Search in Google Scholar

[47] Y. Shehu and O. S. Iyiola, “Strong convergence result for monotone variational inequalities,” Numer. Algorithm., vol. 76, pp. 259–282, 2017. https://doi.org/10.1007/s11075-016-0253-1.Search in Google Scholar

[48] J. Yang and H. Liu, “Strong convergence result for solving monotone variational inequalities in Hilbert space,” Numer. Algorithm., vol. 80, pp. 741–752, 2019. https://doi.org/10.1007/s11075-018-0504-4.Search in Google Scholar

[49] J. Yang, H. Liu, and Z. Liu, “Modified subgradient extragradient algorithms for solving monotone variational inequalities,” Optimization, vol. 67, pp. 2247–2258, 2018. https://doi.org/10.1080/02331934.2018.1523404.Search in Google Scholar

Received: 2021-12-12
Accepted: 2022-07-06
Published Online: 2022-09-19

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2021-0459/html
Scroll to top button