Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 19, 2022

New and refined bond valence parameters for Te4+–F, Te4+–S2− and Te4+–Se2− ion pairs

  • David Hamani EMAIL logo , Lyna Torzuoli , Assil Bouzid , Philippe Thomas and Olivier Masson

Abstract

New and refined bond valence parameters related to ion pairs constituted of the tellurium Te4+ cation and non-oxide X n anions (X = F, S or Se) are proposed. After a selection of specific crystalline structures, the optimization of the bond valence parameters R and b with a cutoff distance is carried out by minimizing the root mean square deviation of the Te4+ cation valence. The results are R = 1.728 Å and b = 0.622 Å with cutoff = 5.3 Å for the Te4+–F pair and R = 2.444 Å and b = 0.387 Å with cutoff = 4.5 Å for the Te4+–S2− pair. These parameters lead to a lower dispersion of the calculated valences around the formal valence compared to that obtained with the parameters available in the literature. As for the new set related to the Te4+–Se2− pair, we find R = 2.578 Å and b = 0.296 Å with cutoff = 3.7 Å.


Corresponding author: David Hamani, Centre Européen de la Céramique, Institut de Recherche sur les Céramiques (IRCER) – UMR CNRS 7315, Université de Limoges, 12 rue Atlantis, 87068 Limoges Cedex, France, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

Comparison of the F, S2− and Se2− valences obtained from different bond valence parameter sets for structures containing one anion type (11 structures containing F, 6 structures containing S2− and 4 structures containing Se2−).

ICSD # Structure Non-equivalent F position # F valence (v.u.)
Brese & O’Keeffe [19] This work with b fixed at 0.37 Å This work
16,108 Sb2TeF14 1 1.156 1.129 0.905
2 1.092 1.055 0.911
3 1.146 1.119 0.886
4 0.972 0.968 1.102
5 0.951 0.948 1.069
6 0.936 0.932 1.069
7 0.905 0.905 0.942
8 0.888 0.887 0.987
9 0.920 0.920 0.951
10 1.204 1.204 1.237
11 0.822 0.822 0.869
12 1.008 1.008 1.051
13 0.960 0.959 1.043
14 0.823 0.823 0.850
81,862 BaTe2F10 1 1.021 1.005 1.046
2 0.907 0.872 0.990
3 1.161 1.138 1.062
4 1.077 1.057 1.050
5 0.963 0.940 0.985
81,865 PbTeF6 1 0.962 0.961 1.072
2 0.908 0.892 0.926
3 0.961 0.944 0.951
4 0.865 0.850 0.964
5 0.957 0.940 1.043
6 1.130 1.105 1.057
84,364 KTe2F9 1 1.188 1.163 1.029
84,364 KTeF5 1 1.030 1.011 0.986
2 1.159 1.133 1.020
2 1.011 0.991 0.971
3 1.147 1.114 1.016
3 1.195 1.170 1.065
4 0.993 0.974 0.956
5 1.029 1.009 0.953
6 0.927 0.907 1.016
7 0.865 0.837 0.978
8 0.943 0.923 0.965
9 0.888 0.867 1.027
85,452 TeF4 1 1.043 1.018 1.020
2 0.983 0.959 0.985
3 1.140 1.113 1.037
4 0.897 0.875 1.050
88,416 BaTeF6 1 1.008 0.979 0.980
2 1.092 1.051 1.066
3 1.097 1.062 1.068
4 0.849 0.833 0.941
5 0.997 0.968 1.005
6 1.065 1.048 1.043
90,619 TlTeF5 1 1.144 1.122 1.018
2 1.015 0.997 0.974
3 0.984 0.963 0.990
200,252 CsTeF5 1 1.029 1.009 1.018
2 1.092 1.070 0.973
3 1.305 1.268 1.049
202,879 NaTeF5 1 1.141 1.094 1.045
2 1.043 1.022 0.987
3 0.988 0.957 0.999
203,140 RbTeF5 1 1.148 1.114 1.017
2 0.982 0.954 0.961
3 0.971 0.938 0.939
4 1.123 1.089 0.976
5 1.000 0.983 0.960
6 0.907 0.888 0.937
ICSD # Structure Non-equivalent S2− position # S2− valence (v.u.)
Brown [20] This work with b fixed at 0.37 Å This work
8 BaTeS3 1 1.868 1.876 1.878
2 1.962 1.970 1.974
85,135 Ag2TeS3 1 2.664 2.678 2.718
2 2.084 2.092 2.108
3 1.998 2.005 2.010
165,378 Cs2MnTe2S6 1 1.922 1.929 1.926
415,120 Li2TeS3 1 2.521 2.533 2.585
2 2.026 2.033 2.047
3 1.974 1.982 2.003
424,890 Cs2TeS3 1 2.069 2.076 2.065
2 2.044 2.051 2.042
3 1.866 1.874 1.867
4 1.952 1.959 1.947
5 1.922 1.930 1.917
6 1.775 1.782 1.777
430,311 Na2TeS3 1 2.007 2.015 2.016
2 2.025 2.031 2.027
3 2.101 2.108 2.099
ICSD # Structure Non-equivalent Se2− position # Se2− valence (v.u.)
This work with b fixed at 0.37 Å This work
63,011 Na2TeSe3 (mC48) 1 2.020 2.007
2 1.982 1.956
3 2.122 2.158
63,012 K2TeSe3 1 2.143 2.175
2 2.048 2.073
3 1.966 1.992
415,121 Li2TeSe3 1 2.004 2.017
2 2.156 2.190
3 2.065 1.986
430,313 Na2TeSe3 (mP24) 1 2.003 1.975
2 2.043 2.031
3 2.151 2.194

References

1. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 2nd ed.; Oxford University Press: Oxford, 2016.10.1093/acprof:oso/9780198742951.001.0001Search in Google Scholar

2. Brown, I. D., Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. 1985, B41, 244–247; https://doi.org/10.1107/s0108768185002063.Search in Google Scholar

3. Altermatt, D., Brown, I. D. The automatic searching for chemical bonds in inorganic crystal structures. Acta Crystallogr. 1985, B41, 240–244; https://doi.org/10.1107/s0108768185002051.Search in Google Scholar

4. Brown, I. D. Recent developments in the methods and applications of the bond valence model. Chem. Rev. 2009, 109, 6858–6919; https://doi.org/10.1021/cr900053k.Search in Google Scholar PubMed PubMed Central

5. Adams, S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr. 2001, B57, 278–287; https://doi.org/10.1107/s0108768101003068.Search in Google Scholar PubMed

6. Adams, S. soft BV (version 0.96), 2004. www.softBV.net.Search in Google Scholar

7. Sidey, V. Alternative presentation of the Brown–Wu bond-valence parameters for some s2 cation/O2− ion pairs. Acta Crystallogr. 2009, B65, 99–101; https://doi.org/10.1107/s0108768108040147.Search in Google Scholar PubMed

8. Krivovichev, S. V. Derivation of bond-valence parameters for some cation-oxygen pairs on the basis of empirical relationships between r0 and b. Z. Kristallogr. 2012, 227, 575–579; https://doi.org/10.1524/zkri.2012.1469.Search in Google Scholar

9. Gagné, O. C., Hawthorne, F. C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, B71, 562–578; https://doi.org/10.1107/s2052520615016297.Search in Google Scholar

10. Chen, H., Adams, S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests. IUCrJ 2017, 4, 614–625; https://doi.org/10.1107/s2052252517010211.Search in Google Scholar

11. Krivovichev, S. V., Brown, I. D. Are the compressive effects of encapsulation an artifact of the bond valence parameters? Z. Kristallogr. 2001, 216, 245–247; https://doi.org/10.1524/zkri.216.5.245.20378.Search in Google Scholar

12. Locock, A. J., Burns, P. C. Revised Tl(I)–O bond valence parameters and the structures of thallous dichromate and thallous uranyl phosphate hydrate. Z. Kristallogr. 2004, 219, 259–266; https://doi.org/10.1524/zkri.219.5.259.32744.Search in Google Scholar

13. Sidey, V. Accurate bond-valence parameters for the Bi3+/Br− ion pair. Acta Crystallogr. 2006, B62, 949–951; https://doi.org/10.1107/s0108768106020295.Search in Google Scholar PubMed

14. Hu, S. Z. A new approach to bond valence parameters for Pb(II)—halide bonds. Acta Phys. Chim. Sin. 2007, 23, 786–789; https://doi.org/10.3866/pku.whxb20070532.Search in Google Scholar

15. Mills, S. J., Christy, A. G., Chen, E. C. C., Raudsepp, M. Revised values of the bond valence parameters for [6]Sb(V)–O and [3–11]Sb(III)–O. Z. Kristallogr. 2009, 224, 423–431; https://doi.org/10.1524/zkri.2009.1166.Search in Google Scholar

16. Christy, A. G., Mills, S. J. Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to TeIVO6 octahedra. Acta Crystallogr. 2013, B69, 446–456; https://doi.org/10.1107/s2052519213023087.Search in Google Scholar

17. Hamani, D., Masson, O., Thomas, P. Localization and steric effect of the lone electron pair of the tellurium Te4+ cation and other cations of the p-block elements. A systematic study. J. Appl. Crystallogr. 2020, 53, 1243–1251; https://doi.org/10.1107/s1600576720010031.Search in Google Scholar

18. Mills, S. J., Christy, A. G. Revised values of the bond-valence parameters for TeIV—O, TeVI—O and TeIV—Cl. Acta Crystallogr. 2013, B69, 145–149; https://doi.org/10.1107/s2052519213004272.Search in Google Scholar

19. Brese, N. E., O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar

20. Brown, I. D. Private Communication, 2001. https://www.iucr.org/resources/data/datasets/bond-valence-parameters.Search in Google Scholar

21. Sidey, V. I., Zubaka, O. V., Stercho, I. P., Peresh, E. Y. X-ray rietveld structure refinement and bond-valence analysis of Cs2TeI6. Chem. Met. Alloys. 2010, 3, 108–114; https://doi.org/10.30970/cma3.0127.Search in Google Scholar

22. Inorganic Crystal Structure Database (ICSD). https://icsd.fiz-karlsruhe.de/.Search in Google Scholar

23. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

Received: 2022-07-13
Accepted: 2022-09-05
Published Online: 2022-09-19
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0042/html
Scroll to top button