Skip to main content
Log in

Effect of initial solvent concentration on the structure and property of polymer nanocomposites

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

A Publisher Correction to this article was published on 31 October 2022

This article has been updated

Abstract

In this study, we investigate how the initial solvent concentration can influence the final structure and property of the polymer nanocomposites (PNCs). To produce the PNCs, nanoparticles (NPs) and polymers are first required to disperse in a good solvent and then the dispersing solvent quickly evaporates. Previous studies found that controlling the evaporation rate of solvents or drying conditions of solution can change the structure of PNCs; however, the colloidal stability of the NP-polymer mixtures depending on the solvent concentrations has not been much considered. In the NP-polymer colloidal mixture as a precursor system of PNC, the microstructure of the NP dispersion is determined by the net interaction between particles, which may sensitively vary depending on the polymer/solvent concentration. The evaporation of the solvent accompanying the PNC manufacturing process results in a continuous change in the component concentration, which means that the interaction between particles can be continuously changed. We found that the varying initial concentrations in NP-polymer mixtures with different amount of the solvent indeed changes the initial dispersion state of the NPs, which ultimately determined the final microstructure and the physical properties of the PNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Hashemi A, Jouault N, Williams GA, Zhao D, Cheng KJ, Kysar JW, Guan Z, Kumar SK (2015) Enhanced glassy state mechanical properties of polymer nanocomposites via supramolecular interactions. Nano Lett 15:5465–5471. https://doi.org/10.1021/acs.nanolett.5b01859

    Article  CAS  Google Scholar 

  2. Kwon NK, Kim H, Han IK, Shin TJ, Lee HW, Park J, Kim SY (2018) Enhanced mechanical properties of polymer nanocomposites using dopamine-modified polymers at nanoparticle surfaces in very low molecular weight polymers. ACS Macro Lett 7:962–967. https://doi.org/10.1021/acsmacrolett.8b00475

    Article  CAS  Google Scholar 

  3. Kumar SK, Ganesan V, Riggleman RA (2017) Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. J Chem Phys 147:020901. https://doi.org/10.1063/1.4990501

    Article  CAS  Google Scholar 

  4. Souier T, Santos S, Al Ghaferi A, Stefancich M, Chiesa M (2012) Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing density. Nanoscale Res Lett 7:630. https://doi.org/10.1186/1556-276X-7-630

    Article  CAS  Google Scholar 

  5. Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th anniversary perspective: Are polymer nanocomposites practical for applications? Macromolecules 50:714–731. https://doi.org/10.1021/acs.macromol.6b02330

    Article  CAS  Google Scholar 

  6. Tu Y, Zhou L, Jin YZ, Gao C, Ye ZZ, Yang YF, Wang QL (2010) Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J Mater Chem 20:1594–1599. https://doi.org/10.1039/b914156a

    Article  CAS  Google Scholar 

  7. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622. https://doi.org/10.1021/cm990537f

    Article  CAS  Google Scholar 

  8. Taccola S, Greco F, Zucca A, Innocenti C, Fernandez Cde J, Campo G, Sangregorio C, Mazzolai B, Mattoli V (2013) Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl Mater Interfaces 5:6324–6332. https://doi.org/10.1021/am4013775

    Article  CAS  Google Scholar 

  9. Yuan W, Zhao H, Hu H, Wang S, Baker GL (2013) Synthesis and characterization of the hole-conducting silica/polymer nanocomposites and application in solid-state dye-sensitized solar cell. ACS Appl Mater Interfaces 5:4155–4161. https://doi.org/10.1021/am4001858

    Article  CAS  Google Scholar 

  10. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590. https://doi.org/10.1016/j.polymer.2006.03.059

    Article  CAS  Google Scholar 

  11. Scott PJ, Rau DA, Wen JH, Nguyen M, Kasprzak CR, Williams CB, Long TE (2020) Polymer-inorganic hybrid colloids for ultraviolet-assisted direct ink write of polymer nanocomposites. Addit Manuf 35:101393. https://doi.org/10.1016/j.addma.2020.101393

    Article  CAS  Google Scholar 

  12. Anderson BJ, Zukoski CF (2010) Rheology and microstructure of polymer nanocomposite melts: variation of polymer segment-surface interaction. Langmuir 26:8709–8720. https://doi.org/10.1021/la9044573

    Article  CAS  Google Scholar 

  13. Oh SM, Abbasi M, Shin TJ, Saalwächter K, Kim SY (2019) Initial solvent-driven nonequilibrium effect on structure, properties, and dynamics of polymer nanocomposites. Phys Rev Lett 123:167801. https://doi.org/10.1103/physrevlett.123.167801

    Article  CAS  Google Scholar 

  14. Kim SY, Zukoski CF (2011) Role of polymer segment–particle surface interactions in controlling nanoparticle dispersions in concentrated polymer solutions. Langmuir 27:10455–10463. https://doi.org/10.1021/la201704u

    Article  CAS  Google Scholar 

  15. Chevigny C, Dalmas F, Di Cola E, Gigmes D, Bertin D, Boué F, Jestin J (2011) Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44:122–133. https://doi.org/10.1021/ma101332s

    Article  CAS  Google Scholar 

  16. Chandran S, Begam N, Basu JK (2014) Dispersion of polymer grafted nanoparticles in polymer nanocomposite films: Insights from surface x-ray scattering and microscopy. J Appl Phys 116:222203. https://doi.org/10.1063/1.4902964

    Article  CAS  Google Scholar 

  17. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  18. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957. https://doi.org/10.1021/cr068035q

    Article  CAS  Google Scholar 

  19. Kim SY, Hall LM, Schweizer KS, Zukoski CF (2010) Long wavelength concentration fluctuations and cage scale ordering of nanoparticles in concentrated polymer solutions. Macromolecules 43:10123–10131. https://doi.org/10.1021/ma1021677

    Article  CAS  Google Scholar 

  20. Kwon NK, Park CS, Lee CH, Kim YS, Zukoski CF, Kim SY (2016) Tunable nanoparticle stability in concentrated polymer solutions on the basis of the temperature dependent solvent quality. Macromolecules 49:2307–2317. https://doi.org/10.1021/acs.macromol.5b02798

    Article  CAS  Google Scholar 

  21. Martin JE, Hurd AJ (1987) Scattering from fractals. J Appl Crystallogr 20:61–78. https://doi.org/10.1107/S0021889887087107

    Article  CAS  Google Scholar 

  22. Kwon NK, Lee TK, Kwak SK, Kim SY (2017) Aggregation-driven controllable plasmonic transition of silica-coated gold nanoparticles with temperature-dependent polymer-nanoparticle interactions for potential applications in optoelectronic devices. ACS Appl Mater Interfaces 9:39688–39698. https://doi.org/10.1021/acsami.7b13123

    Article  CAS  Google Scholar 

  23. Hammons JA, Wang W, Ilavsky J, Pantoya ML, Weeks BL, Vaughn MW (2008) Small angle x-ray scattering analysis of the effect of cold compaction of Al/MoO3 thermite composites. Phys Chem Chem Phys 10:193–199. https://doi.org/10.1039/b711456g

    Article  CAS  Google Scholar 

  24. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged-particles in solutions of electrolytes. Prog Surf Sci 43:30–59. https://doi.org/10.1016/0079-6816(93)90013-L

    Article  Google Scholar 

  25. Kim SY, Zukoski CF (2011) Particle restabilization in silica/PEG/ethanol suspensions: how strongly do polymers need to adsorb to stabilize against aggregation? Langmuir 27:5211–5221. https://doi.org/10.1021/la200022j

    Article  CAS  Google Scholar 

  26. Trens P, Denoyel R (1993) Conformation of poly(ethylene glycol) polymers at the silica/water interface: a microcalorimetric study. Langmuir 9:519–522. https://doi.org/10.1021/la00026a026

    Article  CAS  Google Scholar 

  27. De Gennes PG (1981) Polymer solutions near an interface. Adsorption and depletion layers. Macromolecules 14:1637–1644. https://doi.org/10.1021/ma50007a007

    Article  Google Scholar 

  28. Mackor EL, van der Waals JH (1952) The statistics of the adsorption of rod-shaped molecules in connection with the stability of certain colloidal dispersions. J Colloid Sci 7:535–550. https://doi.org/10.1016/0095-8522(52)90035-4

    Article  CAS  Google Scholar 

  29. Mackor EL (1951) A theoretical approach of the colloid-chemical stability of dispersions in hydrocarbons. J Colloid Sci 6:492–495. https://doi.org/10.1016/0095-8522(51)90019-0

    Article  CAS  Google Scholar 

  30. Kim S, Hyun K, Moon JY, Clasen C, Ahn KH (2015) Depletion stabilization in nanoparticle-polymer suspensions: multi-length-scale analysis of microstructure. Langmuir 31:1892–1900. https://doi.org/10.1021/la504578x

    Article  CAS  Google Scholar 

  31. Feigin RI, Napper DH (1980) Depletion stabilization and depletion flocculation. J Colloid Interface Sci 75:525–541. https://doi.org/10.1016/0021-9797(80)90475-0

    Article  CAS  Google Scholar 

  32. Jenkins P, Snowden M (1996) Depletion flocculation in colloidal dispersions. Adv Colloid Interface Sci 68:57–96. https://doi.org/10.1016/S0001-8686(96)90046-9

    Article  CAS  Google Scholar 

  33. Porter MK, Preska Steinberg A, Ismagilov RF (2019) Interplay of motility and polymer-driven depletion forces in the initial stages of bacterial aggregation. Soft Matter 15:7071–7079. https://doi.org/10.1039/c9sm00791a

    Article  CAS  Google Scholar 

  34. Kwon NK, Kim H, Shin TJ, Saalwachter K, Park J, Kim SY (2020) Control of particle dispersion with autophobic dewetting in polymer nanocomposites. Macromolecules 53:4836–4844. https://doi.org/10.1021/acs.macromol.0c00190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A2C2007339 and NRF-2018R1A5A1024127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Youn Kim.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The history line has been updated. The revised date has been removed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 425 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.Y., Kong, T.Y. & Kim, S.Y. Effect of initial solvent concentration on the structure and property of polymer nanocomposites. Korea-Aust. Rheol. J. 34, 359–367 (2022). https://doi.org/10.1007/s13367-022-00042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00042-x

Keywords

Navigation