Skip to main content
Log in

Efficient test to evaluate the consistency of elastic and viscous moduli with Kramers–Kronig relations

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The principle of causality constrains the real and imaginary parts of the complex modulus \(G^{*} = G^{\prime } + i G^{\prime \prime }\) via Kramers–Kronig relations (KKR). Thus, the consistency of observed elastic or storage (\(G^{\prime }\)) and viscous or loss (\(G^{\prime \prime }\)) moduli can be ascertained by checking whether they obey KKR. This is important when master curves of the complex modulus are constructed by transforming a number of individual datasets; for example, during time-temperature superposition. We adapt a recently developed statistical technique called the ‘Sum of Maxwell Elements using Lasso’ or SMEL test to assess the KKR compliance of linear viscoelastic data. We validate this test by successfully using it on real and synthetic datasets that follow and violate KKR. The SMEL test is found to be both accurate and efficient. As a byproduct, the parameters inferred during the SMEL test provide a noisy estimate of the discrete relaxation spectrum. Strategies to improve the quality and interpretability of the extracted discrete spectrum are explored by appealing to the principle of parsimony to first reduce the number of parameters, and then to nonlinear regression to fine tune the spectrum. Comparisons with spectra obtained from the open-source program pyReSpect suggest possible tradeoffs between speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior: an introduction, 1st edn. Springer, Munich

    Book  Google Scholar 

  2. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  3. Cho KS (2016) Viscoelasticity of polymers: theory and numerical algorithms. Springer, Dordrecht

    Book  Google Scholar 

  4. de L. Kronig R (1926) On the theory of dispersion of X-rays. J Opt Soc Am 12(6):547–557. https://doi.org/10.1364/JOSA.12.000547

    Article  Google Scholar 

  5. Kramers H A (1927) La diffusion de la lumiere par les atomes. Atti Cong Intern Fisica Como 2:545–557

    Google Scholar 

  6. Booij HC, Thoone GPJM (1982) Generalization of Kramers–Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta 21(1):15–24. https://doi.org/10.1007/BF01520701

    Article  Google Scholar 

  7. Peiponen K-E, Vartiainen EM (1991) Kramers–Kronig relations in optical data inversion. Phys Rev B 44:8301–8303. https://doi.org/10.1103/PhysRevB.44.8301

    Article  CAS  Google Scholar 

  8. Lucarini V, Saarinen JJ, Peiponen K-E, Vartiainen EM (2005) Kramers–Kronig relations in optical materials research, vol 110, 1st edn. Springer, Berlin. https://doi.org/10.1007/b138913

  9. Gross B (1941) On the theory of dielectric loss. Phys Rev 59:748–750. https://doi.org/10.1103/PhysRev.59.748

    Article  CAS  Google Scholar 

  10. Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169(1):65–73. https://doi.org/10.1016/j.ssi.2003.07.002. Proceedings of the Annual Meeting of International Society of Electrochemistry

  11. Bode HW (1945) Network analysis and feedback amplifier design. D. Van Nostrand Company, Princeton. https://books.google.com/books?id=fDv0tQEACAAJ

  12. Lucarini V (2009) Evidence of dispersion relations for the nonlinear response of the Lorenz 63 system. J Stat Phys 134(2):381–400. https://doi.org/10.1007/s10955-008-9675-z

    Article  Google Scholar 

  13. Lembo V, Lucarini V, Ragone F (2020) Beyond forcing scenarios: predicting climate change through response operators in a coupled general circulation model. Sci Rep 10(1):8668. https://doi.org/10.1038/s41598-020-65297-2

    Article  CAS  Google Scholar 

  14. Rouleau L, Deü J-F, Legay A, Le Lay F (2013) Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials. Mech Mater 65:66–75. https://doi.org/10.1016/j.mechmat.2013.06.001

    Article  Google Scholar 

  15. Gupta R, Baldewa B, Joshi YM (2012) Time temperature superposition in soft glassy materials. Soft Matter 8:4171–4176. https://doi.org/10.1039/C2SM07071E

    Article  CAS  Google Scholar 

  16. Shukla A, Shanbhag S, Joshi YM (2020) Analysis of linear viscoelasticity of aging soft glasses. J Rheol 64(5):1197–1207. https://doi.org/10.1122/8.0000099

    Article  CAS  Google Scholar 

  17. Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newton Fluid Mech 68(2):225–239. https://doi.org/10.1016/S0377-0257(96)01512-1. Papers presented at the Polymer Melt Rheology Conference

  18. Fuoss RM, Kirkwood JG (1941) Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63(2):385–394. https://doi.org/10.1021/ja01847a013

    Article  CAS  Google Scholar 

  19. Malkin AY, Masalova I (2001) From dynamic modulus via different relaxation spectra to relaxation and creep functions. Rheol Acta 40(3):261–271. https://doi.org/10.1007/s003970000128

    Article  CAS  Google Scholar 

  20. Baumgaertel M, Winter HH (1992) Interrelation between continuous and discrete relaxation time spectra. J Non-Newton Fluid Mech 44:15–36. https://doi.org/10.1016/0377-0257(92)80043-W

    Article  CAS  Google Scholar 

  21. Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newton Fluid Mech 11(1):69–109. https://doi.org/10.1016/0377-0257(82)85016-7

    Article  CAS  Google Scholar 

  22. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, Stoneham. https://doi.org/10.1016/C2013-0-04284-3

  23. McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110. https://doi.org/10.1122/1.550933

    Article  CAS  Google Scholar 

  24. Inkson NJ, McLeish TCB, Harlen OG, Groves DJ (1999) Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom’’ constitutive equations. J Rheol 43(4):873–896. https://doi.org/10.1122/1.551036

    Article  CAS  Google Scholar 

  25. Stadler F, Bailly C (2009) A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 48(1):33–49. https://doi.org/10.1007/s00397-008-0303-2

    Article  CAS  Google Scholar 

  26. Cho KS (2010) A simple method for determination of discrete relaxation time spectrum. Macromol Res 18(4):363–371. https://doi.org/10.1007/s13233-010-0413-4

    Article  CAS  Google Scholar 

  27. Cho KS, Park GW (2013) Fixed-point iteration for relaxation spectrum from dynamic mechanical data. J Rheol 57(2):647–678. https://doi.org/10.1122/1.4789786

    Article  CAS  Google Scholar 

  28. McDougall I, Orbey N, Dealy JM (2014) Inferring meaningful relaxation spectra from experimental data. J Rheol 58:779

    Article  CAS  Google Scholar 

  29. Bae J-E, Cho KS (2015) Logarithmic method for continuous relaxation spectrum and comparison with previous methods. J Rheol 59:1081

    Article  CAS  Google Scholar 

  30. Cho KS (2013) Power series approximations of dynamic moduli and relaxation spectrum. J Rheol 57:679

    Article  CAS  Google Scholar 

  31. Ankiewicz S, Orbey N, Watanabe H, Lentzakis H, Dealy J (2016) On the use of continuous relaxation spectra to characterize model polymers. J Rheol 60(6):1115–1120. https://doi.org/10.1122/1.4960334

    Article  CAS  Google Scholar 

  32. Kedari SR, Atluri G, Vemaganti K (2022) A hierarchical Bayesian approach to regularization with application to the inference of relaxation spectra. J Rheol 66(1):125–145. https://doi.org/10.1122/8.0000232

    Article  CAS  Google Scholar 

  33. Provencher SW (1976) An eigenfunction expansion method for the analysis of exponential decay curves. J Chem Phys 64(7):2772–2777. https://doi.org/10.1063/1.432601

    Article  CAS  Google Scholar 

  34. Takeh A, Shanbhag S (2013) A computer program to extract the continuous and discrete relaxation spectra from dynamic viscoelastic measurements. Appl Rheol 23(2):24628

    Google Scholar 

  35. Shanbhag S (2019) pyReSpect: a computer program to extract discrete and continuous spectra from stress relaxation experiments. Macromol Theory Simul, 1900005. https://doi.org/10.1002/mats.201900005

  36. Shanbhag S (2020) Relaxation spectra using nonlinear Tikhonov regularization with a Bayesian criterion. Rheol Acta 59(8):509–520. https://doi.org/10.1007/s00397-020-01212-w

    Article  CAS  Google Scholar 

  37. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27(3):229–242. https://doi.org/10.1016/0010-4655(82)90174-6

    Article  Google Scholar 

  38. Honerkamp J, Weese J (1989) Determination of the relaxation spectrum by a regularization method. Macromolecules 22(11):4372–4377. https://doi.org/10.1021/ma00201a036

    Article  CAS  Google Scholar 

  39. Weese J (1992) A reliable and fast method for the solution of Fredholm integral equations of the first kind based on Tikhonov regularization. Comput Phys Commun 69(1):99–111. https://doi.org/10.1016/0010-4655(92)90132-I

    Article  Google Scholar 

  40. Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32(1):65–73. https://doi.org/10.1007/BF00396678

    Article  CAS  Google Scholar 

  41. Weese J (1993) A regularization method for nonlinear ill-posed problems. Comput Phys Commun 77(3):429–440. https://doi.org/10.1016/0010-4655(93)90187-H

    Article  CAS  Google Scholar 

  42. Roths T, Marth M, Weese J, Honerkamp J (2001) A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms. Comput Phys Commun 139(3):279–296. https://doi.org/10.1016/S0010-4655(01)00217-X

    Article  CAS  Google Scholar 

  43. Hansen S (2008) Estimation of the relaxation spectrum from dynamic experiments using Bayesian analysis and a new regularization constraint. Rheol Acta 47:169–178. https://doi.org/10.1007/s00397-007-0225-4

    Article  CAS  Google Scholar 

  44. Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28(6):511–519. https://doi.org/10.1007/BF01332922

    Article  CAS  Google Scholar 

  45. Shanbhag S, Joshi YM (2022) Kramers–Kronig relations for nonlinear rheology. Part II: validation of medium amplitude oscillatory shear (MAOS) measurements. J Rheol 66(5):925–936. https://doi.org/10.1122/8.0000481

    Article  CAS  Google Scholar 

  46. Shanbhag S, Joshi YM (2022) Kramers–Kronig relations for nonlinear rheology. Part I: general expression and implications. J Rheol 66(5):973–982. https://doi.org/10.1122/8.0000480

    Article  CAS  Google Scholar 

  47. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B Stat Methodol 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  48. Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B Stat Methodol 73(3):273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x

    Article  Google Scholar 

  49. Lawson CL, Hanson RJ (1995) Solving least squares problems. Classics in Applied Mathematics, vol 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  50. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  51. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  Google Scholar 

  52. Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D (2008) An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  53. Watanabe H, Ishida S, Matsumiya Y, Inoue T (2004) Viscoelastic and dielectric behavior of entangled blends of linear polyisoprenes having widely separated molecular weights: test of tube dilation picture. Macromolecules 37(5):1937–1951. https://doi.org/10.1021/ma030443y

    Article  CAS  Google Scholar 

  54. Davies AR, Anderssen RS (1997) Sampling localization in determining the relaxation spectrum. J Non-Newton Fluid Mech 73(1):163–179. https://doi.org/10.1016/S0377-0257(97)00056-6

    Article  CAS  Google Scholar 

  55. Larson RG, Goyal S, Aloisio C (1996) A predictive model for impact response of viscoelastic polymers in drop tests. Rheol Acta 35(3):252–264. https://doi.org/10.1007/BF00366912

    Article  CAS  Google Scholar 

  56. Goyal S, Larson RG, Aloisio CJ (1999) Quantitative prediction of impact forces in elastomers. J Eng Mater Technol 121(3):294–304. https://doi.org/10.1115/1.2812378

    Article  CAS  Google Scholar 

  57. Singh PK, Soulages JM, Ewoldt RH (2018) Frequency-sweep medium-amplitude oscillatory shear (MAOS). J Rheol 62(1):277–293. https://doi.org/10.1122/1.4999795

    Article  CAS  Google Scholar 

  58. Lennon KR, McKinley GH, Swan JW (2022) A data-driven method for automated data superposition with applications in soft matter science. https://doi.org/10.48550/ARXIV.2204.09521

  59. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253. https://doi.org/10.1103/PhysRevLett.74.1250

    Article  CAS  Google Scholar 

  60. Xu J, Viasnoff V, Wirtz D (1998) Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheol Acta 37(4):387–398. https://doi.org/10.1007/s003970050125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based in part upon work supported by the National Science Foundation under Grant no. NSF DMR-1727870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Shanbhag.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 291 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudel, S., Shanbhag, S. Efficient test to evaluate the consistency of elastic and viscous moduli with Kramers–Kronig relations. Korea-Aust. Rheol. J. 34, 369–379 (2022). https://doi.org/10.1007/s13367-022-00041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00041-y

Keywords

Navigation