Skip to main content
Log in

Interest rate swaps: a comparison of compounded daily versus discrete reference rates

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

This paper studies the hedging effectiveness of interest rate swaps using different reference rates for eliminating interest rate risk from floating rate loans. Two reference rates are studied. The first rate’s maturity, \(\Delta\), matches the payment interval of floating rate loans. The second has an incompatible maturity \(\Delta /N\). The prime examples are LIBOR and SOFR, respectively. We show that the \(\Delta\)-based swap provides a good static hedge, but the \(\Delta /N\)-based swap does not. Although dynamic hedging with the \(\Delta /N\)-based swap is possible under some conditions, it both introduces model risk and increases transaction costs, making it a less practical alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The recent empirical work investigating the LIBOR manipulation includes Abrantes-Metz et al. (2012), Bonaldi (2017), & Gandhi et al. (2019).

  2. According to the Federal Reserve and the Financial Conduct Authority in the UK, LIBOR will be completely phased out by June 30, 2023, and LIBOR one-week and two-month USD LIBOR rates will no longer be published after December 31, 2021.

  3. See, for instance, https://www.newyorkfed.org/arrc/sofr-transition#aboutsofr.

  4. See, for instance, Wall Street Journal, April 19, 2021, “Libor-Replacement Competitor Gains Strength From New Offerings"

  5. Unlike the strategic game paradigm (Eisl, Jankowitsch, & Subrahmanyam, 2017; Baldauf, Frei, & Mollner, 2018; Coulter, Shapiro, & Zimmerman, 2018; Duffie & Dworczak, 2020), Jarrow & Li (2021) show that the equal-weighted average pricing can be more robust to manipulation in a competitive equilibrium paradigm.

  6. See Protter (2005) for the definitions of these various terms.

  7. Of course, we assume the necessary measurability and integrability such that the following expression is well-defined.

  8. Due to the cross-defaulting provisions, whenever default happens, all of the firm’s liabilities are in default.

  9. Note that the default payment received at \(k\Delta\) is still viewed as risky at time \((k-1)\Delta\), and thus we use the discount bond as opposed to the risk-free one.

  10. The proof that a Brownian motion is of unbounded variation can be found at http://stat.math.uregina.ca/~kozdron/Teaching/Regina/862Winter06/Handouts/quad_var_cor.pdf.

  11. See Heath et al. (1992) for a detailed discussion on these conditions.

References

  • Abrantes-Metz, R. M., Kraten, M., Metz, A. D., & Seow, G. S. (2012). Libor manipulation? Journal of Banking and Finance, 36(1), 136–150.

    Article  Google Scholar 

  • Baldauf, M., C. Frei, & J. Mollner (2018). Contracting for financial execution, Working paper, Available at: https://faculty.comm.virginia.edu/sdb7e/files/mcintireseminars/Baldauf_ContractingFinEx.pdf.

  • Bonaldi, P. (2017). Motives and consequences of libor strategic reporting: How much can we learn from banks’ self-reported borrowing rates?, Working paper, Available at: https://docs.google.com/viewer?a=v &pid=sites &srcid=ZGVmYXVsdGRvbWFpbnxwaWV0cm9ib25hbGRpfGd4OjU0NTE0ZmUzYTI2ZDdlY2Q.

  • Chan, K. C., Karolyi, G. A., Longstaff, F. A., & Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate. The Journal of Finance, 47(3), 1209–1227.

    Article  Google Scholar 

  • Coulter, B., Shapiro, J., & Zimmerman, P. (2018). A mechanism for LIBOR. Review of Finance, 22(2), 491–520.

    Article  Google Scholar 

  • de Pagos Internacionales, B., & Basilea S. (2013). Towards better reference rate practices: a central bank perspective. Bank for International Settlements.

  • Duffie, D., & Dworczak P. (2020). Robust benchmark design. Journal of Financial Economics, forthcoming.

  • Eisl, A., Jankowitsch, R., & Subrahmanyam, M. G. (2017). The manipulation potential of Libor and Euribor. European Financial Management, 23(4), 604–647.

    Article  Google Scholar 

  • Financial Conduct Authority (2012). The final report of the wheatley review of LIBOR, Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/191762/wheatley_review_libor_finalreport_280912.pdf.

  • Gandhi, P., Golez, B., Jackwerth, J. C., & Plazzi, A. (2019). Financial market misconduct and public enforcement: The case of Libor manipulation. Management Science, 65(11), 5268–5289.

    Article  Google Scholar 

  • Heath, D., Jarrow, R., & Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica: Journal of the Econometric Society, 60(1), 77–105.

    Article  Google Scholar 

  • Hou, D., & Skeie, D. R. (2014). LIBOR: Origins, economics, crisis, scandal, and reform, FRB of New York Staff Report, (667).

  • Jarrow, R., & Li, S. (2021). Index design: Hedging and manipulation, working paper, Available at: https://ssrn.com/abstract=3819072.

  • Jarrow, R., & Protter, P. (2008). An introduction to financial asset pricing, in Handbooks in OR &MS, ed. by J. Birge, and V. Linetsky, vol. 15, chap. 1. Elsevier.

  • Jarrow, R. A. (2018). Continuous-time asset pricing theory: A martingale-based approach. Springer.

  • Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The Journal of Finance, 50(1), 53–85.

    Article  Google Scholar 

  • Jarrow, R. A., & Turnbull, S. M. (1997). An integrated approach to the hedging and pricing of eurodollar derivatives. Journal of Risk and Insurance, 64(2), 271–299.

    Article  Google Scholar 

  • Protter, P. E. (2005). Stochastic integration and differential equations. Springer-Verlag, New York, 2 edn.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siguang Li.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appedix: Rrelevant proofs and calculations

Appedix: Rrelevant proofs and calculations

1.1 Proof of Theorem 1

Proof

First, we compute the arbitrage-free value of a risky floating rate loan, i.e., claim (2) in theorem 1. For use in the proof, define

$$\begin{aligned} x(t,k\Delta ):=\mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau >k\Delta }}{B_{k\Delta }}\right] B_{t} \end{aligned}$$

to be the present value of a dollar paid at time \(k\Delta\), but only if the firm has not defaulted before that date. Here, \(\mathbb {E}_{t}[\cdot ]:=\mathbb {E}^{\mathbb {Q}}[\cdot |\mathcal {F}_{t}]\). The calculation consists of three parts.

(i) The payment at time \(\Delta\)

The payment at time \(\Delta\) is \(\left( \frac{1}{D(0,\Delta )}-1\right) \mathbbm {1}_{\tau >\Delta }+ \delta _{\tau }\frac{1}{D(0,\Delta )}\mathbbm {1}_{\tau \le \Delta }\).

This is the floating rate payment if no default, and a recovery on the floating rate payment plus notional if default occurs prior to time \(\Delta\).

The value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} L_{t}^{\Delta }= & {} \mathbb {E}_{t}\left[ \frac{\left( \frac{1}{D(0,\Delta )}-1\right) \mathbbm {1}_{\tau>\Delta }+\delta _{\tau }\left( \frac{1}{D(0,\Delta )}\right) \mathbbm {1}_{\tau \le \Delta }}{B_{\Delta }}\right] B_{t}\\= & {} \mathbb {E}_{t}\left[ \frac{\frac{\mathbbm {1}_{\tau>\Delta }+\delta _{\tau } \mathbbm {1}_{\tau \le \Delta }}{D(0,\Delta )}-\mathbbm {1}_{\tau>\Delta }}{B_{\Delta }}\right] B_{t}\\= & {} \frac{1}{D(0,\Delta )}\mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>\Delta }+\delta _{\tau } \mathbbm {1}_{\tau \le \Delta }}{B_{\Delta }}\right] B_{t}-\mathbb {E}_{t} \left[ \frac{\mathbbm {1}_{\tau >\Delta }}{B_{\Delta }}\right] B_{t}\\= & {} \frac{D(t,\Delta )}{D(0,\Delta )}-x(t,\Delta ) \end{aligned}$$

(ii) The payment at time \(k\Delta\) for \(k\in \{2,...,K\}\)

The payment at time \(k\Delta\) is

$$\begin{aligned} \mathbbm {1}_{\tau>(k-1)\Delta }\left[ \left( \frac{1}{D((k-1)\Delta ,k\Delta )}-1\right) \mathbbm {1}_{\tau >k\Delta }+\delta _{\tau }\frac{1}{D((k-1)\Delta ,k\Delta )}\mathbbm {1}_{\tau \le k\Delta }\right] \end{aligned}$$

The value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} L_{t}^{k\Delta }= & {} \mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{D((k-1)\Delta ,k\Delta )}\frac{\mathbbm {1}_{\tau>(k-1)\Delta }}{B_{k\Delta }}-\frac{\mathbbm {1}_{\tau>k\Delta }}{B_{k\Delta }}\right] B_{t}\\= & {} \mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{D((k-1)\Delta ,k\Delta )}\frac{\mathbbm {1}_{\tau>(k-1)\Delta }}{B_{k\Delta }}\right] B_{t}-\mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>k\Delta }}{B_{k\Delta }}\right] B_{t}\\= & {} \mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>(k-1)\Delta }}{D((k-1)\Delta ,k\Delta )}\mathbb {E}_{(k-1)\Delta }\left[ \frac{\mathbbm {1}_{\tau>k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{B_{k\Delta }}\right] \right] B_{t}-x(t,k\Delta )\\= & {} \mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>(k-1)\Delta }}{D((k-1)\Delta ,k\Delta )}\frac{D((k-1)\Delta ,k\Delta )}{B_{(k-1)\Delta }}\right] B_{t}-x(t,k\Delta )\\= & {} \mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau >(k-1)\Delta }}{B_{(k-1)\Delta }}\right] B_{t}-x(t,k\Delta )\\= & {} x(t,(k-1)\Delta )-x(t,k\Delta ). \end{aligned}$$

In the third equality, we used the law of iterated expectations and the fact that \(\mathcal {F}_{(k-1)\Delta }\supseteq \mathcal {F}_{t}\) since \(t<\Delta <(k-1)\Delta\).

(iii) The notional payment at time T

The notional of 1 dollar at time T pays \(1_{\tau >K\Delta }\) dollars, whose value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} N_{t}=E_{t}\left[ \frac{1_{\tau >K\Delta }}{B_{K\Delta }}\right] B_{t}=x(t,T) \end{aligned}$$

Thus, the value of a risking floating rate loan at time \(t\in (0,\Delta )\) is

$$\begin{aligned} L_{t}&=L_{t}^{\Delta }+\sum _{k=2}^{K}L_{t}^{\Delta k}+N_{t}\\&=\left[ \frac{D(t,\Delta )}{D(0,\Delta )}-x(t,\Delta )\right] +\sum _{k=2}^{K}\left[ x(t,(k-1)\Delta )-x(t,k\Delta )\right] +x(t,T)\\&=\frac{D(t,\Delta )}{D(0,\Delta )}. \end{aligned}$$

Now, the case for the default-free floating rate loan just follows, i.e., claim (1) in theorem 1. If there is no default risk, then \(p(t,k\Delta )=D(t,k\Delta )\) and thus

$$\begin{aligned} L_{t}=\frac{p(t,\Delta )}{p(0,\Delta )}. \end{aligned}$$

The proof concludes. \(\square\)

1.2 Proof of Theorem 3

Proof

First, we compute the value of a floating leg of \(\Delta\)-swap on a credit risky reference rate at time \(t\in (0,\Delta )\). It consists of two parts.

(i) The payment at time \(\Delta\)

The payment at time \(\Delta\) is \(S_{\Delta }=\frac{1}{D(0,\Delta )}-1\), whose value at \(t\in (0,\Delta )\) is

$$\begin{aligned} S_{t}^{\Delta }&=\mathbb {E}_{t}\left[ \frac{\frac{1}{D(0,\Delta )}-1}{B_{\Delta }}\right] B_{t}=\frac{1}{D(0,\Delta )}\mathbb {E}_{t}\left[ \frac{1}{B_{\Delta }}\right] B_{t}-\mathbb {E}_{t}\left[ \frac{1}{B_{\Delta }}\right] B_{t}\\&=\frac{p(t,\Delta )}{D(0,\Delta )}-p(t,\Delta ) \end{aligned}$$

(ii) The payment at time \(k\Delta\) for \(k\in \{2,...,K\}\)

The payment at time \(k\Delta\) is \(S_{k\Delta }=\frac{1}{D\left( (k-1)\Delta ,k\Delta \right) }-1\), whose value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} S_{t}^{k\Delta }= & {} \mathbb {E}_{t}\left[ \frac{\frac{1}{D((k-1)\Delta ,k\Delta )}-1}{B_{k\Delta }}\right] B_{t}\\= & {} \mathbb {E}_{t}\left[ \frac{1}{D((k-1)\Delta ,k\Delta )}\mathbb {E}_{(k-1)\Delta }\left[ \frac{1}{B_{k\Delta }}\right] \right] B_{t}-\mathbb {E}_{t}\left[ \frac{1}{B_{k\Delta }}\right] B_{t}\\= & {} \mathbb {E}_{t}\left[ \frac{1}{D((k-1)\Delta ,k\Delta )}\frac{p((k-1)\Delta ,k\Delta )}{B_{(k-1)\Delta }}\right] B_{t}-p(t,k\Delta ) \end{aligned}$$

Again, in the second inequality, we used the law of iterated expectation and the fact that \(\mathcal {F}_{(k-1)\Delta }\supseteq \mathcal {F}_{t}\), and that \(\frac{1}{D((k-1)\Delta ,k\Delta )}\) is \(\mathcal {F}_{(k-1)\Delta }\)-adapted.

Now, we are ready to compute the value of a risky floating leg at time \(t\in (0,\Delta )\) as given by

$$\begin{aligned} S_{t}&=S_{t}^{\Delta }+\sum _{k=2}^{K}S_{t}^{k\Delta }\\&=\frac{p(t,\Delta )}{D(0,\Delta )}-p(t,\Delta )+\sum _{k=2}^{K}\left( \mathbb {E}_{t}\left[ \frac{p((k-1)\Delta ,k\Delta )}{D((k-1)\Delta ,k\Delta )}\frac{1}{B_{(k-1)\Delta }}\right] B_{t}-p(t,k\Delta )\right) \\&=\frac{p(t,\Delta )}{D(0,\Delta )}+\sum _{k=2}^{K}\mathbb {E}_{t}\left[ \frac{p((k-1)\Delta ,k\Delta )}{D((k-1)\Delta ,k\Delta )}\frac{1}{B_{(k-1)\Delta }}\right] B_{t}-\sum _{k=1}^{K}p(t,k\Delta ) \end{aligned}$$

This proves claim (2) in theorem 3.

Furthermore, note that claim (1) directly follows from claim (2). Specifically, when there is no default risk, \(p(t,k\Delta )=D(t,k\Delta )\), and thus

$$\begin{aligned} S_{t}= & {} \frac{p(t,\Delta )}{p(0,\Delta )}+\sum _{k=2}^{K}\mathbb {E}_{t}\left[ \frac{p((k-1)\Delta ,k\Delta )}{p((k-1)\Delta ,k\Delta )}\frac{1}{B_{(k-1)\Delta }}\right] B_{t}-\sum _{k=1}^{K}p(t,k\Delta )\\= & {} \frac{p(t,\Delta )}{p(0,\Delta )}+\sum _{k=2}^{K}\mathbb {E}_{t}\left[ \frac{1}{B_{(k-1)\Delta }}\right] B_{t}-\sum _{k=1}^{K}p(t,k\Delta )\\= & {} \frac{p(t,\Delta )}{p(0,\Delta )}+\sum _{k=2}^{K}p(t,(k-1)\Delta )-\sum _{k=1}^{K}p(t,k\Delta )\\= & {} \frac{p(t,\Delta )}{p(0,\Delta )}-p(t,T) \end{aligned}$$

The proof concludes. \(\square\)

1.2.1 A lower bound on \(S_{t}\)

Lemma 1

\(S_{t}\ge \frac{p(t,\Delta )}{D(0,\Delta )}-p(t,T)\).

Proof

To get a lower bound on \(S_{t}\), we use the following inequality

$$\begin{aligned} \frac{\mathbbm {1}_{\tau >k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{D((k-1)\Delta ,k\Delta )}-1\le \frac{1}{D((k-1)\Delta ,k\Delta )}-1 \end{aligned}$$

for \(k\in \{2,...,K\}\). This further implies that

$$\begin{aligned} S_{t}^{k\Delta }&\ge \mathbb {E}_{t}\left[ \left( \frac{\mathbbm {1}_{\tau>k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{D((k-1)\Delta ,k\Delta )}-1\right) \frac{1}{B_{k\Delta }}\right] B_{t}\\&=\mathbb {E}_{t}\left[ \frac{\mathbbm {1}_{\tau>k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{D((k-1)\Delta ,k\Delta )}\frac{1}{B_{k\Delta }}\right] B_{t}-\mathbb {E}_{t}\left[ \frac{1}{B_{k\Delta }}\right] B_{t}\\&=\mathbb {E}_{t}\left[ \frac{1}{D((k-1)\Delta ,k\Delta )}\mathbb {E}_{(k-1)\Delta }\left[ \frac{\mathbbm {1}_{\tau >k\Delta }+\delta _{\tau }\mathbbm {1}_{\tau \le k\Delta }}{B_{k\Delta }}\right] \right] B_{t}-p(t,k\Delta )\\&=\mathbb {E}_{t}\left[ \frac{1}{D((k-1)\Delta ,k\Delta )}\frac{D((k-1)\Delta ,k\Delta )}{B_{(k-1)\Delta }}\right] B_{t}-p(t,k\Delta )\\&=\mathbb {E}_{t}\left[ \frac{1}{B_{(k-1)\Delta }}\right] B_{t}-p(t,k\Delta )\\&=p\big (t,(k-1)\Delta \big )-p(t,k\Delta ). \end{aligned}$$

Consequently,

$$\begin{aligned} S_{t}&=S_{t}^{\Delta }+\sum _{k=2}^{K}S_{t}^{k\Delta }\\&\ge \frac{p(t,\Delta )}{D(0,\Delta )}-p(t,\Delta )+\sum _{k=2}^{K}\left[ p(t,(k-1)\Delta )-p(t,k\Delta )\right] \\&=\frac{p(t,\Delta )}{D(0,\Delta )}-p(t,T) \end{aligned}$$

The proof concludes. \(\square\)

1.3 Proof of Theorem 4

Proof

The computation consists of two parts.

(i) The payment at time \(\Delta\). The payment at time \(\Delta\) is \(e^{\int _{0}^{\Delta }r_{s}ds}-1=B_{\Delta }-1\), and its value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} S_{t}^{\Delta }=\mathbb {E}_{t}\left[ \frac{B_{\Delta }-1}{B_{\Delta }} \right] B_{t}=B_{t}-\mathbb {E}_{t}\left[ \frac{1}{B_{\Delta }}\right] B_{t}=B_{t}-p(t,\Delta ). \end{aligned}$$

(ii) The payment at time \(k\Delta\) for \(k>1\). The payment at time \(k\Delta\) is

$$\begin{aligned} e^{\int _{(k-1)\Delta }^{k\Delta }r_{s}ds}-1=\frac{B_{k\Delta }}{B_{(k-1)\Delta }}-1, \end{aligned}$$

and its value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} S_{t}^{k\Delta }&=\mathbb {E}_{t}\left[ \frac{\frac{B_{k\Delta }}{B_{(k-1)\Delta }}-1}{B_{_{k\Delta }}}\right] B_{t}=\mathbb {E}_{t}\left[ \frac{1}{B_{(k-1)\Delta }}\right] B_{t} -\mathbb {E}_{t}\left[ \frac{1}{B_{_{k\Delta }}}\right] B_{t}\\&=p(t,(k-1)\Delta )-p(t,k\Delta ). \end{aligned}$$

Now, we can compute the floating leg of a dt-swap, and the value at time \(t\in (0,\Delta )\) is

$$\begin{aligned} S_{t}&=S_{t}^{\Delta }+\sum _{k=2}^{K}S_{t}^{k\Delta }\\&=B_{t}-p(t,\Delta )+\sum _{k=2}^{K}\left[ p(t,(k-1)\Delta )-p(t,k\Delta )\right] \\&=B_{t}-p(t,T). \end{aligned}$$

The proof concludes. \(\square\)

1.4 Proof of Theorem 5

Proof

The calculation consists of two parts.

(i) The payment at time \(\Delta\). Note that the payment at time \(\Delta\) is

$$\begin{aligned} S_{\Delta }=\prod _{i=1}^{N}\frac{1}{p\left( \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right) }-1 \end{aligned}$$

For \(t\in (0,\frac{\Delta }{N})\), the time t value of \(S_{\Delta }\) is

$$\begin{aligned} S_{t}^{\Delta }={ \frac{p\big (t,\Delta /N\big )}{p\Big (0,\Delta /N\Big )}-p(t,\Delta )} \end{aligned}$$
(12)

More generally, for \(t\in \left[ \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right)\) with \(i\in \{1,...,N\}\),

$$\begin{aligned} S_{t}^{\Delta }=\frac{p(t,i\Delta /N)}{\prod _{n=1}^{i}p\Big (\frac{(n-1) \Delta }{N},\frac{n\Delta }{N}\Big )}p(t,\Delta ). \end{aligned}$$
(13)

(ii) The payment at time \(k\Delta\) for \(k>1\). The payment at time \(k\Delta\) is

$$\begin{aligned} S_{k\Delta }=\prod _{i=1}^{N}\frac{1}{p\left( (k-1) \Delta +\frac{(i-1)\Delta }{N},(k-1)\Delta +\frac{i\Delta }{N}\right) }-1 \end{aligned}$$

For \(t<(k-1)\Delta\), the time t value of \(S_{k\Delta }\) is

$$\begin{aligned} S_{t}^{k\Delta }=p(t,(k-1)\Delta )-p(t,k\Delta ) \end{aligned}$$
(14)

With the aid of eqs. (12) and (14), we can compute the floating leg of a \(\Delta /N\)-based swap as given by

$$\begin{aligned} S_{t}&=S_{t}^{\Delta }+\sum _{k=2}^{K}S_{t}^{k\Delta }\\&={ \frac{p\big (t,\Delta /N\big )}{p\Big (0,\Delta /N\Big )} -p(t,\Delta )}+\sum _{k=2}^{K}\left[ p(t,(k-1)\Delta )-p(t,k\Delta )\right] \\&={ \frac{p\big (t,\Delta /N\big )}{p\Big (0,\Delta /N\Big )}-p(t,T)} \end{aligned}$$

Now, it suffices to show equations eqs.(12) and (14) to complete the proof.

\(\square\)

The proof for equation (12).

The proof for equation (14)

Proof

At time \(t\in (0,\frac{\Delta }{N})\),

$$\begin{aligned} S_{t}^{\Delta }&=\mathbb {E}_{t}\left[ \frac{S_{\Delta }}{B_{\Delta }}\right] B_{t}\\&=\frac{1}{{{ p(0,\frac{\Delta }{N}}{ )}}}\mathbb {E}_{t}\left[ \prod _{i=2}^{N}\frac{1}{p\left( \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right) }\frac{1}{B_{\Delta }}\right] B_{t}-\mathbb {E}_{t}\left[ \frac{1}{B_{\Delta }}\right] B_{t}\\&=\frac{1}{p(0,\frac{\Delta }{N})}\mathbb {E}_{t}\left[ \prod _{i=2}^{N}\frac{1}{p\left( \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right) }\frac{1}{B_{\Delta }}\right] B_{t}-p(t,\Delta )\\&=\frac{1}{p(0,\frac{\Delta }{N})}\mathbb {E}_{t}\left[ \prod _{i=2}^{N}\frac{1}{p\left( \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right) }\mathbb {E}_{\frac{(N-1)\Delta }{N}}\left[ \frac{1}{B_{\Delta }}\right] \right] B_{t}-p(t,\Delta )\\&=\frac{1}{p(0,\frac{\Delta }{N})}\mathbb {E}_{t}\left[ \prod _{i=2}^{N}\frac{1}{p\left( \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right) }\frac{p\left( \frac{(N-1)\Delta }{N},\Delta \right) }{B_{\frac{(N-1)\Delta }{N}}}\right] B_{t}-p(t,\Delta )\\&=\frac{1}{p(0,\frac{\Delta }{N})}\mathbb {E}_{t}\left[ \prod _{i=2}^{N-1}\frac{1}{p\left( \frac{(i-1)\Delta }{N},\frac{i\Delta }{N}\right) }\frac{1}{B_{\frac{(N-1)\Delta }{N}}}\right] B_{t}-p(t,\Delta ) \end{aligned}$$

Continuing as above by applying the law of iterated expectations repeatedly,

$$\begin{aligned} S_{t}^{\Delta }={\frac{p\big (t,\Delta /N\big )}{p\Big (0,\Delta /N\Big )}-p(t,\Delta )} \end{aligned}$$

This completes the proof for eq. (12). \(\square\)

Proof


To simplify notation, rewrite \(S_{k\Delta }=\prod _{i=1}^{N}W(i)\), where

$$\begin{aligned} W(i):=\frac{1}{p\left( (k-1)\Delta +\frac{(i-1)\Delta }{N},(k-1)\Delta +\frac{i\Delta }{N}\right) }. \end{aligned}$$

For \(t<(k-1)\Delta\),

$$\begin{aligned} S_{t}^{k\Delta }&=\mathbb {E}_{t}\left[ \frac{S_{k\Delta }}{B_{k\Delta }}\right] B_{t}\\&=\mathbb {E}_{t}\left[ \left( \prod _{i=1}^{N}W(i)\right) \frac{1}{B_{k\Delta }}\right] B_{t}-\mathbb {E}_{t}\left[ \frac{1}{B_{k\Delta }}\right] B_{t}\\&=\mathbb {E}_{t}\left[ \left( \prod _{i=1}^{N}W(i)\right) \frac{1}{B_{k\Delta }}\right] B_{t}-p(t,k\Delta )\\&=\mathbb {E}_{t}\left[ \left( \prod _{i=1}^{N}W(i)\right) \mathbb {E}_{(k-1)\Delta +\frac{(N-1)\Delta }{N}}\left[ \frac{1}{B_{k\Delta }}\right] \right] B_{t}-p(t,k\Delta )\\&=\mathbb {E}_{t}\left[ \left( \prod _{i=1}^{N}W(i)\right) \times \frac{p\left( (k-1)\Delta +\frac{(N-1)\Delta }{N},k\Delta \right) }{B_{(k-1)\Delta +\frac{(N-1)\Delta }{N}}}\right] B_{t}-p(t,k\Delta )\\&=\mathbb {E}_{t}\left[ \left( \prod _{i=1}^{N-1}W(i)\right) \frac{1}{B_{(k-1)\Delta +\frac{(N-1)\Delta }{N}}}\right] B_{t}-p(t,k\Delta ) \end{aligned}$$

Continuing as above by applying the law of iterated expectations repeatedly,

$$\begin{aligned} S_{t}^{k\Delta }=\mathbb {E}_{t}\left[ \frac{1}{B\left( (k-1)\Delta \right) }\right] B_{t}-p(t,k\Delta )=p(t,(k-1)\Delta )-p(t,k\Delta ) \end{aligned}$$

This completes the proof for eq. (14). \(\square\)

All the proofs conclude for theorem 5. \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrow, R., Li, S. Interest rate swaps: a comparison of compounded daily versus discrete reference rates. Rev Deriv Res 26, 1–21 (2023). https://doi.org/10.1007/s11147-022-09191-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-022-09191-1

Keywords

JEL

Navigation