Skip to main content
Log in

Improved Upper Bounds for the Rate of Separating and Completely Separating Codes

  • CODING THEORY
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

A binary code is said to be an \((s,\ell)\)-separating code if for any two disjoint sets of its codewords of cardinalities at most \(s\) and \(\ell\) respectively, there exists a coordinate in which all words of the first set have symbol 0 while all words of the second have 1. If, moreover, for any two sets there exists a second coordinate in which all words of the first set have 1 and all words of the second have 0, then such a code is called an \((s,\ell)\)-completely separating code. We improve upper bounds on the rate of separating and completely separating codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sagalovich, Yu.L., A Method for Increasing the Reliability of Finite Automata, Probl. Peredachi Inf., 1965, vol. 1, no. 2, pp. 27–35 [Probl. Inf. Transm. (Engl. Transl.), 1965, vol. 1, no. 2, pp. 27–35]. http://mi.mathnet.ru/eng/ppi734

    MathSciNet  Google Scholar 

  2. Friedman, A.D., Graham, R.L., and Ullman, J.D., Universal Single Transition Time Asynchronous State Assignments, IEEE Trans. Comput., 1969, vol. 18, no. 6, pp. 541–547. https://doi.org/10.1109/T-C.1969.222707

    Article  Google Scholar 

  3. Barg, A., Blakley, G.R., and Kabatiansky, G.A., Digital Fingerprinting Codes: Problem Statements, Constructions, Identification of Traitors, IEEE Trans. Inform. Theory, 2003, vol. 49, no. 4, pp. 852–865. https://doi.org/10.1109/TIT.2003.809570

    Article  MathSciNet  Google Scholar 

  4. Stinson, D.R., Wei, R., and Chen, K., On Generalized Separating Hash Families, J. Combin. Theory Ser. A, 2008, vol. 115, no. 1, pp. 105–120. https://doi.org/10.1016/j.jcta.2007.04.005

    Article  MathSciNet  Google Scholar 

  5. Sagalovich, Yu.L., Completely Separating Systems, Probl. Peredachi Inf., 1982, vol. 18, no. 2, pp. 74–82 [Probl. Inf. Transm. (Engl. Transl.), 1982, vol. 18, no. 2, pp. 140–146]. http://mi.mathnet.ru/eng/ppi1227

    MathSciNet  MATH  Google Scholar 

  6. Pinsker, M.S. and Sagalovich, Yu.L., Lower Bound for the Power of an Automaton State Code, Probl. Peredachi Inf., 1972, vol. 8, no. 3, pp. 58–66 [Probl. Inf. Transm. (Engl. Transl.), 1972, vol. 8, no. 3, pp. 224–230]. http://mi.mathnet.ru/eng/ppi854

    Google Scholar 

  7. Randriambololona, H., \((2,1)\)-Separating Systems beyond the Probabilistic Bound, Israel J. Math., 2013, vol. 195, no. 1, pp. 171–186. https://doi.org/10.1007/s11856-012-0126-9

    Article  MathSciNet  Google Scholar 

  8. Sagalovich, Yu.L., Upper Bound for the Power of an Automaton State Code, Probl. Peredachi Inf., 1973, vol. 9, no. 1, pp. 73–83 [Probl. Inf. Transm. (Engl. Transl.), 1973, vol. 9, no. 1, pp. 55–63]. http://mi.mathnet.ru/eng/ppi884

    Google Scholar 

  9. Körner, J. and Simonyi, G., Separating Partition Systems and Locally Different Sequences, SIAM J. Discrete Math., 1988, vol. 1, no. 3, pp. 355–359. https://doi.org/10.1137/0401035

    Article  MathSciNet  Google Scholar 

  10. Sagalovich, Yu.L., New Upper Bounds on Cardinality of Separating Systems, Probl. Peredachi Inf., 1993, vol. 29, no. 2, pp. 109–111 [Probl. Inf. Transm. (Engl. Transl.), 1993, vol. 29, no. 2, pp. 199–202]. http://mi.mathnet.ru/eng/ppi182

    MathSciNet  MATH  Google Scholar 

  11. Bassalygo, L.A., Burmester, M., Dyachkov, A., and Kabatianskii, G., Hash Codes, in Proc. 1997 IEEE Int. Symp. on Information Theory (ISIT’97), Ulm, Germany, June 29 – July 4, 1997, p. 174. https://doi.org/10.1109/ISIT.1997.613089

  12. D’yachkov, A.G., Vilenkin, P.A., and Yekhanin, S.M., Upper Bounds on the Rate of Superimposed \((s,\ell)\)-Codes Based on Engel’s Inequality, in Proc. 8th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-8), Tsarskoe Selo, Russia, Sept. 8–14, 2002, pp. 95–99.

  13. Lebedev, V.S., Asymptotic Upper Bound for the Rate of \((w,r)\) Cover-Free Codes, Probl. Peredachi Inf., 2003, vol. 39, no. 4, pp. 3–9 [Probl. Inf. Transm. (Engl. Transl.), 2003, vol. 39, no. 4, pp. 317–323]. https://doi.org/10.1023/B:PRIT.0000011270.09033.8f

    MathSciNet  Google Scholar 

  14. Cohen, G.D. and Schaathun, H.G., Asymptotic Overview on Separating Codes, Tech. Rep. of Dept. of Informatics, Univ. of Bergen, Bergen, Norway, 2003, no. 248. Available at http://www.ii.uib.no/~georg/sci/inf/coding/hyperpdf/cs03rep.pdf

  15. Vorob’ev, I.V., Bounds on the Rate of Separating Codes, Probl. Peredachi Inf., 2017, vol. 53, no. 1, pp. 34–46 [Probl. Inf. Transm. (Engl. Transl.), 2017, vol. 53, no. 1, pp. 30–41]. https://doi.org/10.1134/S0032946017010021

    MathSciNet  MATH  Google Scholar 

  16. Hollmann, H.D.L., van Lint, J.H., Linnartz, J.-P., and Tolhuizen, L.M.G.M., On Codes with the Identifiable Parent Property, J. Combin. Theory Ser. A, 1998, vol. 82, no. 2, pp. 121–133. https://doi.org/10.1006/jcta.1997.2851

    Article  MathSciNet  Google Scholar 

  17. Kabatiansky, G.A., Traceability Codes and Their Generalizations, Probl. Peredachi Inf., 2019, vol. 55, no. 3, pp. 93–105 [Probl. Inf. Transm. (Engl. Transl.), 2019, vol. 55, no. 3, pp. 283–294]. https://doi.org/10.1134/S0032946019030074

    MathSciNet  MATH  Google Scholar 

  18. Kautz, W. and Singleton, R., Nonrandom Binary Superimposed Codes, IEEE Trans. Inform. Theory, 1964, vol. 10, no. 4, pp. 363–377. https://doi.org/10.1109/TIT.1964.1053689

    Article  Google Scholar 

  19. Mitchell, C.J. and Piper, F.C., Key Storage in Secure Networks, Discrete Appl. Math., 1988, vol. 21, no. 3, pp. 215–228. https://doi.org/10.1016/0166-218X(88)90068-6

    Article  MathSciNet  Google Scholar 

  20. Magó, G., Monotone Functions in Sequential Circuits, IEEE Trans. Comput., 1973, vol. 22, no. 10, pp. 928–933. https://doi.org/10.1109/T-C.1973.223620

    Article  MathSciNet  Google Scholar 

  21. D’yachkov, A.G. and Rykov, V.V., Bounds on the Length of Disjunctive Codes, Probl. Peredachi Inf., 1982, vol. 18, no. 3, pp. 7–13 [Probl. Inf. Transm. (Engl. Transl.), 1982, vol. 18, no. 3, pp. 166–171]. http://mi.mathnet.ru/eng/ppi1232

    MathSciNet  MATH  Google Scholar 

  22. Stinson, D.R., Wei, R., and Zhu, L., Some New Bounds for Cover-Free Families, J. Combin. Theory Ser. A, 2000, vol. 90, pp. 224–234. https://doi.org/10.1006/jcta.1999.3036

    Article  MathSciNet  Google Scholar 

  23. D’yachkov, A., Vilenkin, P., Macula, A., and Torney, V., Families of Finite Sets in Which No Intersection of \(\ell\) Sets Is Covered by the Union of \(s\) Others, J. Combin. Theory Ser. A, 2002, vol. 99, no. 2, pp. 195–218. https://doi.org/10.1006/jcta.2002.3257

    Article  MathSciNet  Google Scholar 

  24. Lebedev, V.S., Some Tables for \((w,r)\)-Superimposed Codes, in Proc. 8th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-8), Tsarskoe Selo, Russia, Sept. 8–14, 2002, pp. 185–189.

  25. Blackburn, S.R., Frameproof Codes, SIAM J. Discrete Math., 2003, vol. 16, no. 3, pp. 499–510. https://doi.org/10.1137/S0895480101384633

    Article  MathSciNet  Google Scholar 

  26. Erdős, P., Frankl, P., and Füredi, Z., Families of Finite Sets in Which No Set Is Covered by the Union of Two Others, J. Combin. Theory Ser. A, 1982, vol. 33, no. 2, pp. 158–166. https://doi.org/10.1016/0097-3165(82)90004-8

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of I.V. Vorob’ev was carried out at the expense of the Russian Science Foundation, project no. 22-41-02028. The research of V.S. Lebedev was supported in part by the joint grant of the Russian Foundation for Basic Research and the Bulgarian National Science Fund, project no. 20-51-18002.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2022, Vol. 58, No. 3, pp. 45–57. https://doi.org/10.31857/S0555292322030044

Appendix: Lower Bounds On the Rate of Codes with a Separating Distance

Appendix: Lower Bounds On the Rate of Codes with a Separating Distance

Theorem 4.

The maximum cardinality \(M_{u,v}(N,d)\) of a code having \((u,v)\)-separating distance \(d=\lfloor \tau N\rfloor\) satisfies the inequality

$$\log_2M_{u, v}(N, d)\ge N\frac{-h(\tau)-\tau\log_2\Delta(u,v)-(1-\tau)\log_2(1-\Delta(u,v))+o(1)}{u+v-1}$$
(25)

for \(0\le\tau <\Delta(u,v)\) with \(\Delta(u,v)\) as defined in (18).

Note that the right-hand side is positive for \(\tau<\Delta(u,v)\) and tends to zero as \(\tau\to\Delta(u,v)\). For \(u=v=1\) we have \(\Delta(1,1)=1/2\), and our lower bound turns into the Gilbert–Varshamov bound.

Proof.

Consider a random code of length \(N\) and cardinality \(M\) where each element of every codeword is chosen independently and equals \(1\) with probability \(p\).

The probability that a fixed coordinate separates two sets of codewords of sizes \(u\) and \(v\) is

$$q=p^u(1-p)^v+p^v(1-p)^u.$$

We choose the parameter \(p\) so that to maximize \(q\). Note that the maximum of the separation probability precisely equals the \(\Delta(u,v)\) defined in (18). The number \(\xi\) of coordinates separating two fixed sets of codewords has the binomial distribution with parameters \(N\) and \(\Delta=\Delta(u,v)\). Let us estimate the probability that \(\xi<d\) given that \(\Delta(u,v)>\tau\):

$$\begin{aligned} \mathcal{P}=\sum\limits_{k=0}^{d-1}\binom{N}{k}\Delta^k(1-\Delta)^{N-k}\le N2^{N(h(\tau)+\tau\log_2\Delta+(1-\tau)\log_2(1-\Delta)+o(1))}. \end{aligned}$$

Thus,

$$N^{-1}\log_2\mathcal{P}=h(\tau)+\tau\log_2\Delta+(1-\tau)\log_2(1-\Delta)+o(1).$$

The mathematical expectation of the number of sets of codewords with the separating distance between them being less than \(d\) is at most \(\mathcal{P}\cdot M^{u+v}\). Standard expurgation arguments result in the bound

$$\log_2M_{u, v}(N, d)\ge N \frac{-h(\tau)-\tau\log_2\Delta-(1-\tau)\log_2(1-\Delta)+o(1)} {u+v-1},$$

as required. △

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’ev, I., Lebedev, V. Improved Upper Bounds for the Rate of Separating and Completely Separating Codes. Probl Inf Transm 58, 242–253 (2022). https://doi.org/10.1134/S0032946022030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946022030048

Keywords

Navigation