Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 5, 2022

The synthesis, crystal structure and conformation analysis of triclopyr ethyl ester

  • Jun-Xia Li EMAIL logo , Lin-Yuan Xiong , Xiao-Jie Xu , Chang Liu and Zheng-Guo Wang EMAIL logo

Abstract

Triclopyr ethyl ester (1) has been co-synthesized through one-pot solvothermal reaction and the crystal structure has been determined by single crystal X-ray structure analysis. The compound C18H16Cl6N2O6 crystallizes in the monoclinic crystal system, P21/c space group with unit-cell parameters: a = 4.9615(2) Å, b = 30.9297(14) Å, c = 15.9155(10) Å, β = 91.466(4)° and Z = 4. Each unit cell is composed of two discrete, similar but reversely arranged triclopyr ethyl ester organic molecules. In the 3D packing plot, 1 is further assembled into a network structure via rich Cl⋯Cl halogen bond interactions. In addition, the crystal structure, the flexible conformation of phenoxy methylene group of 1 has been carefully compared and discussed with those of triclopyr acid.


Corresponding authors: Jun-Xia Li, Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province, 471934, P. R. China, E-mail: ; and Zheng-Guo Wang, Faculty Development Center, Hezhou University, Hezhou, Guangxi, 542899, P. R. China, E-mail:

Funding source: Key Scientific Research Projects in Colleges and Universities of Henan Province http://dx.doi.org/10.13039/501100013066

Award Identifier / Grant number: 21A150036

Funding source: Science and Technology Innovation Team in Colleges and Universities of Henan Province http://dx.doi.org/10.13039/501100010950

Award Identifier / Grant number: 21IRTSTHN004

  1. Author contributions: Jun-Xia Li: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Writing – review & editing. Lin-Yuan Xiong: Writing draft. Xiao-Jie Xu: Formal analysis, Software, Data curation. Chang Liu: Software, editing. Zheng-Guo Wang: Validation, Supervision, Review and editing.

  2. Research funding: This work was supported by the key scientific research projects in colleges and universities of Henan Province (No. 21A150036), and the support plan for science and technology innovation team in colleges and universities of Henan Province (No. 21IRTSTHN004).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Availability of data and material: CCDC 2094156 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

  5. Code availability: Not applicable.

References

1. Cho, S., Kim, J., Jeon, Y., Kim, T. H. Crystal structure of triclopyr. Acta Crystallogr. 2014, E70, o940; https://doi.org/10.1107/S160053681401681X.Search in Google Scholar PubMed PubMed Central

2. Anésio, A. H. C., Santos, M. V., Silveira, R. R., Ferreira, E. A., Santos, J. B. D., Silva, L. D. D. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops. Ann. Acad. Bras. Ciênc. 2018, 90, 1717–1732; https://doi.org/10.1590/0001-3765201820170134.Search in Google Scholar PubMed

3. Gibson, D. J., Shupert, L. A., Liu, X. Do no harm: efficacy of a single herbicide application to control an invasive shrub while minimizing collateral damage to native species. Plants 2019, 8, 426; https://doi.org/10.3390/plants8100426.Search in Google Scholar PubMed PubMed Central

4. Turner, M. A., Gulsby, W. D., Harper, C. A. Mixture of triclopyr and imazapyr more effective than triclopyr alone for hardwood forest stand improvement. For. Sci. 2021, 67, 43–48; https://doi.org/10.1093/forsci/fxaa039.Search in Google Scholar

5. Stern, R. A., Stern, D., Harpaz, M., Gazit, S. Applications of 2,4,5-TP, 3,5,6-TPA, and combinations thereof increase lychee fruit size and yield. Hortscience 2000, 35, 661–664; https://doi.org/10.21273/HORTSCI.35.4.661.Search in Google Scholar

6. Stern, A. R., Ben-Arie, R. Pre-harvest drop control of ‘Red Delicious’ and ‘Jonathan’ apple (Malus domestica) as affected by the synthetic auxin 3,5,6-TPA. J. Hortic. Sci. Biotechnol. 2006, 81, 943–948; https://doi.org/10.1080/14620316.2006.11512180.Search in Google Scholar

7. Barlow, S. M., Terry, C., Gehen, S., Corvaro, M. Developmental toxicity studies on triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rabbit. Food Chem. Toxicol. 2022, 161, 112845; https://doi.org/10.1016/j.fct.2022.112845.Search in Google Scholar PubMed

8. Barlow, S. M., Terry, C., Gehen, S., Corvaro, M. Reproductive and developmental evaluations of triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rat. Food Chem. Toxicol. 2022, 161, 112806; https://doi.org/10.1016/j.fct.2021.112806.Search in Google Scholar PubMed

9. Maddila, S., Rana, S., Pagadala, R., Maddila, S. N., Vasam, C., Jonnalagadda, S. B. Ozone-driven photocatalyzed degradation and mineralization of pesticide, triclopyr by Au/TiO2. J. Environ. Sci. Heal. B 2015, 50, 571–583; https://doi.org/10.1080/03601234.2015.1028835.Search in Google Scholar PubMed

10. Zhu, J. W., Zhao, Y., Ruan, H. H. Isolation and characterization of a triclopyr degrading bacterium. Basillus mycoides TR-9. Fresenius Environ. Bull. 2017, 26, 3639–3643.Search in Google Scholar

11. Baglieri, A., Negre, M., Trotta, F., Bracco, P., Gennari, M. Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr. J. Environ. Sci. Heal. B 2013, 48, 784–792; https://doi.org/10.1080/03601234.2013.780943.Search in Google Scholar PubMed

12. Pozdnyakov, I. P., Snytnikova, O. A., Yanshole, V. V., Fedunov, R. G., Grivin, V. P., Plyusnin, V. F. Direct UV photodegradation of herbicide triclopyr in aqueous solutions: a mechanistic study. Chemosphere 2022, 293, 133573; https://doi.org/10.1016/j.chemosphere.2022.133573.Search in Google Scholar PubMed

13. Tayeb, M. A., Ismail, B. S., Khairiatul-Mardiana, J. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil. Environ. Moint. Assess. 2017, 189, 551; https://doi.org/10.1007/s10661-017-6236-4.Search in Google Scholar PubMed

14. Zhou, Z., Wang, Y., Peng, F., Meng, F., Zha, J., Ma, L., Du, Y., Peng, N., Ma, L., Zhang, Q., Gu, L., Yin, W., Gu, Z., Tan, C. Intercalation-activated layered MoO3 nanobelts as biodegradable Nanozymes for tumor-specific photo-enhanced catalytic therapy. Angew. Chem. Int. Ed. 2022, 61, e202115939; https://doi.org/10.1002/anie.202115939.Search in Google Scholar PubMed

15. Li, J. X., Du, Z. X., Xiong, L. Y., Fu, L. L., Bo, W. B. Supramolecular isomerism in two nickel(II) coordination polymers constructed with the flexible 2-carboxyphenoxyacetate linker: syntheses, structure analyses and magnetic properties. J. Solid State Chem. 2021, 293, 121799; https://doi.org/10.1016/j.jssc.2020.121799.Search in Google Scholar

16. Li, R. F., Zhang, H., Hong, M. Z., Shi, J. G., Liu, X. F., Feng, X. Two Co(II)/Ni(II) complexes based on nitrogenous heterocyclic ligand as high-performance electrocatalyst for hydrogen evolution reaction. Dalton Trans. 2022, 51, 3970–3976; https://doi.org/10.1039/D1DT03814A.Search in Google Scholar PubMed

17. Hu, P., Xiao, F. P., Wu, Y. F., Yang, X. M., Li, N., Wang, H. K., Jia, J. F. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem. Eng. J. 2022, 443, 136257; https://doi.org/10.1016/j.cej.2022.136257.Search in Google Scholar

18. Zhang, J., Li, J. Synthesis, structure and magnetic properties of a binuclear copper(II) complex constructed by a new coordination mode of the tetrachlorophthalate ligand. Z. Naturforsch. 2016, 71b, 45–49; https://doi.org/10.1515/znb-2015-0135.Search in Google Scholar

19. Li, J. X., Du, Z. X. Zinc and cobalt complexes with (2-carboxyphenoxy) acetic acid ligand: syntheses, structures, fluorescent and magnetic properties. J. Coord. Chem. 2016, 69, 2563–2572; https://doi.org/10.1080/00958972.2016.1216106.Search in Google Scholar

20. He, W., Zhou, Z., Han, Z., Li, S., Zhou, Z., Ma, L., Zang, S. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem. Int. Ed. 2021, 60, 8505–8509; https://doi.org/10.1002/anie.202100006.Search in Google Scholar PubMed

21. Du, Z. X., Li, J. X., Liu, S. J., Wang, Z. Q., Pan, Q. J. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation. Z. Naturforsch. 2020, 75b, 567–575; https://doi.org/10.1515/znb-2020-0036.Search in Google Scholar

22. Liang, Y. J., Feng, G., Zhang, X., Li, J. X., Jiang, Y. Bis(pyridyl) ancillary ligands and pyrazine sulfonic acid in the synthesis of two Ag(I) supramolecular structures and fluorescent properties of the latter. J. Struct. Chem. 2021, 62, 300–308; https://doi.org/10.1134/s0022476621020153.Search in Google Scholar

23. Li, J. X., Du, Z. X., Feng, X. A new binuclear NiII complex with tetrafluorophthalate and 2,2′-bipyridine ligands: synthesis, crystal structure and magnetic properties. Z. Naturforsch. 2019, 74b, 833–838; https://doi.org/10.1515/znb-2019-0128.Search in Google Scholar

24. Zheng, Z., Xu, P., Jiang, Y., Liang, Y. J., Li, J. X. “Soft-hard” strategy to construct a pyrazine sulfonic acid copper(II) supramolecular structure and a study of its fluorescent property. J. Struct. Chem. 2021, 62, 292–299; https://doi.org/10.1134/s0022476621020141.Search in Google Scholar

25. Zhao, X., He, X., Hou, A., Cheng, C., Wang, X., Yue, Y., Wu, Z., Wu, H., Liu, B., Li, H., Shen, J., Tan, C., Zhou, Z., Ma, L. Growth of Cu2O nanoparticles on two-dimensional Zr-ferrocene-metal-organic framework nanosheets for photothermally enhanced chemodynamic antibacterial therapy. Inorg. Chem. 2022, 61, 9328–9338; https://doi.org/10.1021/acs.inorgchem.2c01091.Search in Google Scholar PubMed

26. Li, R. F., Wang, M. Z., Liu, X. F., Feng, X. Near-infrared luminescence and magnetism of several lanthanide polymers by biphenyl carboxylic acid ligand. Inorg. Chim. Acta 2022, 539, 121029; https://doi.org/10.1016/j.ica.2022.121029.Search in Google Scholar

27. Hu, H., Quan, J., Tan, Z., Fu, J. H., Liang, Y. J., Li, J. X. Synthesis and properties of dimercury(I) crystal network constructed with functionalized pyrazine sulfonate and nitrate linkers. Russ. J. Gen. Chem. 2021, 91, 910–914; https://doi.org/10.1134/S1070363221050224.Search in Google Scholar

28. Hu, P., Xiao, F. P., Wang, H. K., Rogach, A. L. Dual-functional hosts derived from metal-organic frameworks reduce dissolution of polyselenides and inhibit dendrite growth in a sodium-selenium battery. Energy Storage Mater. 2022, 51, 249–258; https://doi.org/10.1016/j.ensm.2022.06.019.Search in Google Scholar

29. Du, Z. X., Li, J. X. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties. Z. Naturforsch. 2020, 75b, 577–581; https://doi.org/10.1515/znb-2020-0042.Search in Google Scholar

30. Li, J. X., Zhang, T., Chen, H. J., Du, Z. X. A (4,4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties. Z. Kristallogr. 2021, 236, 251–259; https://doi.org/10.1515/zkri-2021-2043.Search in Google Scholar

31. Zhong, K. L. Bis(1,10-phenanthroline-κ2N,N’)(sulfato-κ2O,O’)cobalt(II) propane-1,3-diol solvate. Acta Crystallogr. 2010, E66, m247; https://doi.org/10.1107/S1600536810003478.Search in Google Scholar PubMed PubMed Central

32. Li, J. X., Xia, Y. Q., Cheng, L. M., Feng, X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: structures, properties and hirshfeld surface analyses. J. Solid State Chem. 2022, 313, 123271; https://doi.org/10.1016/j.jssc.2022.123271.Search in Google Scholar

33. Du, Z. X., Li, J. X. The synthesis, structure and magnetic properties of a mononuclear cobalt compound with dipyrimidine sulfane ligand derived from 2-thio-barbituric acid. Inorg. Chim. Acta 2015, 436, 159–162. https://doi.org/10.1016/j.ica.2015.07.036.Search in Google Scholar

34. Liang, Y. J., Hu, D., Zhang, L., Jiang, Y., Li, J. X. The synthesis and properties of a sodium supramolecular crystal network constructed with functional pyrazine sulfonic acid. J. Struct. Chem. 2021, 62, 1801–1809. https://doi.org/10.1134/S0022476621110172.Search in Google Scholar

35. Li, J. X., Zhang, Y. H., Du, Z. X., Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorg. Chim. Acta 2022, 530, 120697; https://doi.org/10.1016/j.ica.2021.120697.Search in Google Scholar

36. Li, J. X., Du, Z. X., Wang, J., Feng, X. Two mononuclear zinc(II) complexes constructed by two types of phenoxyacetic acid ligands: syntheses, crystal structures and fluorescence properties. Z. Naturforsch. 2019, 74b, 839–845; https://doi.org/10.1515/znb-2019-0147.Search in Google Scholar

37. Li, J. X., Du, Z. X. A binuclear cadmium(II) cluster based on π⋯π stacking and halogen⋯halogen interactions: synthesis, crystal analysis and fluorescent properties. J. Cluster Sci. 2020, 31, 507–511; https://doi.org/10.1007/s10876-019-01666-w.Search in Google Scholar

38. Li, J. X., Du, Z. X., Zhang, L. L., Liu, D. L., Pan, Q. Y. Doubly mononuclear cocrystal and oxalato-bridged binuclear copper compounds containing flexible 2-((3,5,6-trichloropyridin-2-yl) oxy)acetate tectons: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 512, 119890; https://doi.org/10.1016/j.ica.2020.119890.Search in Google Scholar

39. Li, J. X., Du, Z. X., Pan, Q. Y., Zhang, L. L., Liu, D. L. The first 3,5,6-trichloropyridine-2-oxyacetate bridged manganese coordination polymer with features of π⋯π stacking and halogen⋯halogen interactions: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 509, 119677; https://doi.org/10.1016/j.ica.2020.119677.Search in Google Scholar

40. Du, Z. X., Li, J. X. Crystal structure of tetraaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy) acetato-κO)-nickel(II)—diaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy)acetato)-nickel(II), C28H24Cl12N4Ni2O18. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 881–883; https://doi.org/10.1515/ncrs-2020-0075.Search in Google Scholar

41. Du, Z. X., Li, J. X., Bai, R. F. The crystal structure of catena-poly [(μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 55–56; https://doi.org/10.1515/ncrs-2019-0470.Search in Google Scholar

42. Li, J. X., Du, Z. X. The crystal structure of catena-poly[(μ2-4,4′-dipyridine-κ2N,N′)-bis (3,5,6-trichloropyridine-2-oxyacetato-κO)-bis(ethanol-κO)nickel(II)], C28H26Cl6N4NiO8. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 887–890; https://doi.org/10.1515/ncrs-2020-0083.Search in Google Scholar

43. Li, J. X., Du, Z. X., Bai, R. F. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato-κ2N,O) zinc(II) dihydrate, C14H16Br2N2O7Zn. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 63–65; https://doi.org/10.1515/ncrs-2019-0486.Search in Google Scholar

44. Du, Z. X., Li, J. X., Bai, R. F. Crystal structure of catena-poly[μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 15–17; https://doi.org/10.1515/ncrs-2019-0434.Search in Google Scholar

45. CrysAlis Pro, Rigaku Oxford Diffraction; Yarnton: Oxfordshire, UK, 2016.Search in Google Scholar

46. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

47. Sheldrick, G. M. Shelxl – integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

48. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

49. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601; https://doi.org/10.1021/acs.chemrev.5b00484.Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0047).


Received: 2022-07-21
Accepted: 2022-09-13
Published Online: 2022-10-05
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0047/html
Scroll to top button