Skip to main content
Log in

Lateral particle migration in shear-thinning colloidal dispersion

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Colloidal dispersions have been frequently encountered in a wide range of industrial applications, such as foods, paints, and Li-ion electrode slurries. Therefore, it is essential to understand the rheological and flow characteristics of colloidal dispersions to improve the quality and optimize the processing conditions of colloidal products. The shear viscosity of a colloidal dispersion deviates from Newtonian behavior, exhibiting shear thinning and/or shear thickening as the volume fraction of the colloidal particles increases. However, there are not many reports on the non-Newtonian flow phenomena caused by the normal stress differences of colloidal dispersion due to their small magnitude. Recently, these normal stress differences in colloidal dispersions with a constant shear viscosity lead to a single-line focused streams of micron-sized particles along the centerline of microchannels. In this study, the lateral migration of single micron-sized particles suspended in poly (N-isopropylacrylamide) microgel dispersions with a shear-thinning viscosity was investigated. The micron-sized particles migrated toward the centerline or between the centerline and wall of a microchannel depending on the volume fraction of the colloidal particles and the flow conditions. The current findings are expected to contribute to our understanding of the non-Newtonian fluid dynamics in colloidal dispersions and flow-induced particle segregation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  2. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  3. Guazzelli É, Morris JF, Pic S (2011) A physical introduction to suspension dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Shikata T, Pearson DS (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38:601

    Article  Google Scholar 

  5. Lee M, Alcoutlabi M, Magda J, Dibble C, Solomon M, Shi X, McKenna G (2006) The effect of the shear-thickening transition of model colloidal spheres on the sign of N 1 and on the radial pressure profile in torsional shear flows. J Rheol 50:293

    Article  CAS  Google Scholar 

  6. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley Interscience, New York

    Google Scholar 

  7. Kim B, Lee SS, Yoo TH, Kim S, Kim SY, Choi S-H, Kim JM (2019) Normal stress difference-driven particle focusing in nanoparticle colloidal dispersion. Sci Adv 5:eaav4819

    Article  Google Scholar 

  8. Kim B, Lee SS, Yoo TH, Kim JM (2021) Viscoelastic particle focusing in human biofluids. Electrophoresis 42:2238

    Article  CAS  Google Scholar 

  9. Karnis A, Mason SG, Goldsmith HL (1963) Axial migration of particles in Poiseuille flow. Nature 200:159

    Article  Google Scholar 

  10. Karnis A, Mason SG (1966) Particle motions in sheared suspensions. XIX viscoelastic media. Trans Soc Rheol 10:571

    Article  CAS  Google Scholar 

  11. Ho BP, Leal LG (1976) Migration of rigid spheres in a 2-dimensional unidirectional shear-flow of a 2nd-order fluid. J Fluid Mech 76:783

    Article  Google Scholar 

  12. Leshansky AM, Bransky A, Korin N, Dinnar U (2007) Tunable nonlinear viscoelastic “focusing” in a microfluidic device. Phys Rev Lett 98:234501

    Article  CAS  Google Scholar 

  13. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266

    Article  CAS  Google Scholar 

  14. D’Avino G, Greco F, Maffettone PL (2017) Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu Rev Fluid Mech 49:341

    Article  Google Scholar 

  15. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM (2013) DNA-based highly tunable particle focuser. Nat Commun 4:2567

    Article  Google Scholar 

  16. Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, McKinley GH, Toner M (2014) Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat Commun 5:4120

    Article  CAS  Google Scholar 

  17. Xuan XC, Zhu JJ, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9:1

    Article  Google Scholar 

  18. Lu X, Liu C, Hu G, Xuan X (2017) Particle manipulations in non-Newtonian microfluidics: a review. J Colloid Interf Sci 50:182–201

    Article  Google Scholar 

  19. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14:2739

    Article  CAS  Google Scholar 

  20. D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638

    Article  CAS  Google Scholar 

  21. Del Giudice F, D’Avino G, Greco F, De Santo I, Netti PA, Maffettone PL (2015) Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab Chip 15:783

    Article  Google Scholar 

  22. Del Giudice F, Calcagno V, Esposito Taliento V, Greco F, Netti PA, Maffettone PL (2017) Relaxation time of polyelectrolyte solutions: when μ-rheometry steps in charge. J Rheol 61:13

    Article  Google Scholar 

  23. Cho M, Hong SO, Lee SH, Hyun K, Kim JM (2019) Effects of ionic strength on lateral particle migration in shear-thinning xanthan gum solutions. Micromachines 10:535

    Article  Google Scholar 

  24. Seo KW, Byeon HJ, Huh HK, Lee SJ (2014) Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv 4:3512

    Article  CAS  Google Scholar 

  25. Royall CP, Poon WCK, Weeks ER (2013) In search of colloidal hard spheres. Soft Matter 9:17

    Article  CAS  Google Scholar 

  26. Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705

    Article  CAS  Google Scholar 

  27. Acciaro R, Gilányi T, Varga I (2011) Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution. Langmuir 27:7917

    Article  CAS  Google Scholar 

  28. Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W (1994) The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 272:467

    Article  CAS  Google Scholar 

  29. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550

    Article  CAS  Google Scholar 

  30. Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893

    Article  CAS  Google Scholar 

  31. Pusey PN, van Megen W (1986) Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340

    Article  CAS  Google Scholar 

  32. Brady JF, Vicic M (1995) Normal stresses in colloidal dispersions. J Rheol 39:545

    Article  CAS  Google Scholar 

  33. Bergenholtz J, Brady JF, Vicic M (2002) The non-Newtonian rheology of dilute colloidal suspensions. J Fluid Mech 456:239

    Article  CAS  Google Scholar 

  34. Huber ML, Perkins RA, Laesecke A, Friend DG, Sengers JV, Assael MJ, Metaxa IN, Vogel E, Mareš R, Miyagawa K (2009) New international formulation for the viscosity of H2O. J Phys Chem Ref Data 38:101

    Article  CAS  Google Scholar 

  35. Utashiro Y, Takiguchi M, Satoh M (2017) Zeta potential of PNIPAM microgel particles dispersed in water—effects of charged radical initiators vs. OH− ion adsorption. Colloid Polym Sci 295:45

    Article  CAS  Google Scholar 

  36. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104:18892

    Article  Google Scholar 

  37. Huang PY, Joseph DD (2000) Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids. J Non-Newt Fluid Mech 90:159

    Article  CAS  Google Scholar 

  38. Villone MM, D’Avino G, Hulsen MA, Greco F, Maffettone PL (2013) Particle motion in square channel flow of a viscoelastic liquid: migration vs. secondary flows. J Non-Newton Fluid Mech 195:1

    Article  CAS  Google Scholar 

  39. Lim S, Kim S, Ahn KH, Lee SJ (2015) The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries. J Power Sources 299:221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (NRF-2017R1A5A1015365, NRF-2022R1F1A1074036, NRF-2018R1A5A1024127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Soup Shim or Ju Min Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.H., Shim, T.S. & Kim, J.M. Lateral particle migration in shear-thinning colloidal dispersion. Korea-Aust. Rheol. J. 34, 327–334 (2022). https://doi.org/10.1007/s13367-022-00043-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00043-w

Keywords

Navigation