Skip to main content

Advertisement

Log in

Water-soluble dicarboxylic acids, oxoacids and α-dicarbonyls in the tropical aerosols in coastal megacity Mumbai: molecular characteristics and formation processes

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Daytime and nighttime PM10 samples were collected during summer (June) and winter (February) at a representative urban site in Mumbai, located on the western coast of Indian subcontinent. Samples were studied for molecular distribution of water-soluble dicarboxylic acids, oxoacids and dicarbonyls as well as total carbon (TC), water-soluble organic carbon (WSOC), inorganic ions along with specific markers (levoglucosan, K+) to better understand sources and formation processes of organic aerosols in Mumbai. The distribution of water-soluble organics was characterised by high abundance of oxalic acid (C2), followed by phthalic (Ph), terephthalic (tPh), azelaic (C9), malonic (C3), and succinic acids (C4). Positive correlations between C2, sulfate and glyoxal (ωC2) suggest secondary production of C2 predominantly via aqueous phase chemistry. C2 also showed positive correlation with K+ and levoglucosan indicating that biomass/biofuel burning is the potential source of diacids in the Mumbai aerosols. In addition, higher average contributions of total diacids to WSOC and OC in winter than in summer suggest that aerosols were aged i.e., photochemically well processed in winter in Mumbai. On the other hand, diurnal change in their ratios is observed with higher ratio in daytime samples than that of previous and succeeding nighttime samples, suggesting diacids are also influenced from local sources in both the seasons. This study demonstrates that biomass burning as well as biogenic sources are important sources influencing the distributions of aerosols in Mumbai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability (software application or custom code)

Not applicable.

References

  • Agarwal, S., Aggarwal, S.G., Okuzawa, K., Kawamura, K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos. Chem. Phys. 10(13), 5839–5858 (2010). https://doi.org/10.5194/acp-10-5839-2010

    Article  Google Scholar 

  • Aggarwal, S.G., Mochida, M., Kitamori, Y., Kawamura, K.: Chemical closure study on hygroscopic properties of urban aerosol particles in Sapporo, Japan. Environ. Sci. Technol. 41(20), 6920–6925 (2007). https://doi.org/10.1021/es063092m

    Article  Google Scholar 

  • Aggarwal, S.G., Kawamura, K., Umarji, G.S., Tachibana, E., Patil, R.S., Gupta, P.K.: Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing. Atmos. Chem. Phys. 13(9), 4667–4680 (2013). https://doi.org/10.5194/acp-13-4667-2013

    Article  Google Scholar 

  • Aggarwal, S.G., Kawamura, K.: Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long‐range atmospheric transport. J. Geophys. Res.: Atmos. 113(D14), (2008). https://doi.org/10.1029/2007JD009365

  • Andreae, M.O.: Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science 220(4602), 1148–1151 (1983)

    Article  Google Scholar 

  • Bandow, H., Washida, N., Akimoto, H.: Ring-cleavage Reactions of Aromatic Hydrocarbons Studied by FT–IR Spectroscopy. I. Photooxidation of Toluene and Benzene in the NO x–Air System. Bull. Chem. Soc. Jpn. 58(9), 2531–2540 (1985)

    Article  Google Scholar 

  • Bikkina, S., Kawamura, K., Miyazaki, Y., Fu, P.: High abundances of oxalic, azelaic and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophys. Res. Lett. 41, 3649–3657 (2014). https://doi.org/10.1002/2014GL059913

    Article  Google Scholar 

  • Carrico, C.M., Bergin, M.H., Shrestha, A.B., Dibb, J.E., Gomes, L., Harris, J.M.: The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos. Environ. 37(20), 2811–2824 (2003). https://doi.org/10.1016/S1352-2310(03)00197-3

    Article  Google Scholar 

  • Carrico, C.M., Kreidenweis, S.M., Malm, W.C., Day, D.E., Lee, T., Carrillo, J., McMeeking, G.R., Collett, J.L., Jr.: Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmos. Environ. 39(8), 1393–1404 (2005). https://doi.org/10.1016/j.atmosenv.2004.11.029

    Article  Google Scholar 

  • Chen, Y., Guo, H., Nah, T., Tanner, D.J., Sullivan, A.P., Takeuchi, M., Gao, Z., Vasilakos, P., Russell, A.G., Baumann, K., Huey, L.G.: Low-molecular-weight carboxylic acids in the southeastern US: formation, partitioning, and implications for organic aerosol aging. Environ. Sci. Technol. 55(10), 6688–6699 (2021). https://doi.org/10.1021/acs.est.1c01413

    Article  Google Scholar 

  • Deshmukh, D.K., Kawamura, K., Deb, M.K.: Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere 161, 27–42 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.107

    Article  Google Scholar 

  • Ervens, B.T.B.W.R., Turpin, B.J., Weber, R.J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 11(21), 11069–11102 (2011)

    Article  Google Scholar 

  • Ervens, B., Feingold, G., Clegg, S.L., Kreidenweis, S.M.: A modeling study of aqueous production of dicarboxylic acids: 2. Implications for cloud microphysics. J. Geophys. Res.: Atmos. 109(D15), (2004). https://doi.org/10.1029/2004JD004575

  • Fu, P.Q., Kawamura, K., Chen, J., Li, J., Sun, Y.L., Liu, Y., Tachibana, E., Aggarwal, S.G., Okuzawa, K., Tanimoto, H., Kanaya, Y.: Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmos. Chem. Phys. 12(18), 8359–8375 (2012). https://doi.org/10.5194/acp-12-8359-2012

    Article  Google Scholar 

  • Fu, P., Aggarwal, S.G., Chen, J., Li, J., Sun, Y., Wang, Z., Chen, H., Liao, H., Ding, A., Umarji, G.S., Patil, R.S.: Molecular markers of secondary organic aerosol in Mumbai, India. Environ. Sci. Technol. 50(9), 4659–4667 (2016). https://doi.org/10.1021/acs.est.6b00372

    Article  Google Scholar 

  • Fu, T.M., Jacob, D.J., Wittrock, F., Burrows, J.P., Vrekoussis, M., Henze, D.K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res.: Atmos. 113(D15), (2008)

  • Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H.: Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 21, 52–57 (1987). https://doi.org/10.1021/es00155a005

    Article  Google Scholar 

  • Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C.: Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 40(17), 3030–3040 (2006). https://doi.org/10.1016/j.atmosenv.2005.11.069

    Article  Google Scholar 

  • Huang, X.F., Hu, M., He, L.Y., Tang, X.Y.: Chemical characterization of water-soluble organic acids in PM2. 5 in Beijing, China. Atmos. Environ. 39(16), 2819–2827 (2005). https://doi.org/10.1016/j.atmosenv.2004.08.038

    Article  Google Scholar 

  • Kaku, K.C., Hegg, D.A., Covert, D.S., Santarpia, J.L., Jonsson, H., Buzorius, G., Collins, D.R.: Organics in the Northeastern Pacific and their impacts on aerosol hygroscopicity in the subsaturated and supersaturated regimes. Atmos. Chem. Phys. 6(12), 4101–4115 (2006). https://doi.org/10.5194/acp-6-4101-2006

    Article  Google Scholar 

  • Kalogridis, A.C., Popovicheva, O.B., Engling, G., Diapouli, E., Kawamura, K., Tachibana, E., Ono, K., Kozlov, V.S., Eleftheriadis, K.: Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber. Atmos. Environ. 185, 15–28 (2018)

    Article  Google Scholar 

  • Kawamura, K.: Identification of C2-C10. omega.-oxocarboxylic acids, pyruvic acid, and C2-C3. alpha.-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS. Anal. Chem. 65(23), 3505–3511 (1993). https://doi.org/10.1021/ac00071a030

    Article  Google Scholar 

  • Kawamura, K., Bikkina, S.: A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmos. Res. 170, 140–160 (2016). https://doi.org/10.1016/j.atmosres.2015.11.018

    Article  Google Scholar 

  • Kawamura, K., Gagosian, R.B.: Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 325(6102), 330–332 (1987). https://doi.org/10.1038/325330a0

    Article  Google Scholar 

  • Kawamura, K., Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27(10), 2227–2235 (1993). https://doi.org/10.1021/es00047a033

    Article  Google Scholar 

  • Kawamura, K., Kaplan, I.R.: Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21(1), 105–110 (1987). https://doi.org/10.1021/es00155a014

    Article  Google Scholar 

  • Kawamura, K., Yasui, O.: Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 39, 1945–1960 (2005). https://doi.org/10.1016/j.atmosenv.2004.12.014

    Article  Google Scholar 

  • Kawamura, K., Kasukabe, H., Barrie, L.A.: Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations. Atmos. Environ. 30(10–11), 1709–1722 (1996). https://doi.org/10.1016/1352-2310(95)00395-9

    Article  Google Scholar 

  • Kawamura, K., Okuzawa, K., Aggarwal, S.G., Irie, H., Kanaya, Y., Wang, Z.: Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai. Atmos. Chem. Phys. 13(10), 5369–5380 (2013)

    Article  Google Scholar 

  • Kumar, S., Aggarwal, S.G., Gupta, P.K., Kawamura, K.: Investigation of the tracers for plastic-enriched waste burning aerosols. Atmos. Environ. 108, 49–58 (2015). https://doi.org/10.1016/j.atmosenv.2015.02.066

    Article  Google Scholar 

  • Lee, Y.S., Collins, D.R., Li, R., Bowman, K.P., Feingold, G.: Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations. J. Geophys. Res.: Atmos. 111(D22), (2006). https://doi.org/10.1029/2005JD006464

  • Legrand, M., Preunkert, S., Oliveira, T., Pio, C.A., Hammer, S., Gelencsér, A., Kasper‐Giebl, A., Laj, P.: Origin of C2–C5 dicarboxylic acids in the European atmosphere inferred from year‐round aerosol study conducted at a west‐east transect. J. Geophys. Res.: Atmos. 112(D23), (2007). https://doi.org/10.1029/2006JD008019

  • Lelieveld, J.O., Crutzen, P.J., Ramanathan, V., Andreae, M.O., Brenninkmeijer, C.A.M., Campos, T., Cass, G.R., Dickerson, R.R., Fischer, H., De Gouw, J.A., Hansel, A.: The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291(5506), 1031–1036 (2001). https://doi.org/10.1126/science.1057103

    Article  Google Scholar 

  • Lim, H.J., Carlton, A.G., Turpin, B.J.: Isoprene forms secondary organic aerosol through cloud processing: Model simulations. Environ. Sci. Technol. 39(12), 4441–4446 (2005). https://doi.org/10.1021/es048039h

    Article  Google Scholar 

  • Liu, Y., Monod, A., Tritscher, T., Praplan, A.P., DeCarlo, P.F., Temime-Roussel, B., Quivet, E., Marchand, N., Dommen, J., Baltensperger, U.: Aqueous phase processing of secondary organic aerosol from isoprene photooxidation. Atmos. Chem. Phys. 12(13), 5879–5895 (2012)

    Article  Google Scholar 

  • Miyazaki, Y., Aggarwal, S.G., Singh, K., Gupta, P.K., Kawamura, K.: Dicarboxylic acids and water‐soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. J. Geophys. Res.: Atmos. 114(D19), (2009). https://doi.org/10.1029/2009JD011790

  • Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., Yamazaki, K.: Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. J. Geophys. Res. 108, 4193 (2003). https://doi.org/10.1029/2002JD002355

    Article  Google Scholar 

  • Novakov, T., Penner, J.E.: Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365(6449), 823–826 (1993). https://doi.org/10.1038/365823a0

    Article  Google Scholar 

  • Pavuluri, C.M., Kawamura, K., Tachibana, E., Swaminathan, T.: Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmos. Environ. 44(29), 3597–3604 (2010). https://doi.org/10.1016/j.atmosenv.2010.05.039

    Article  Google Scholar 

  • Pavuluri, C.M., Kawamura, K., Swaminathan, T.: Time-resolved distributions of bulk parameters, diacids, ketoacids and α-dicarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes. Atmos. Res. 153, 188–199 (2015). https://doi.org/10.1016/j.atmosres.2014.08.011

    Article  Google Scholar 

  • Pulikesi, M., Baskaralingam, P., Elango, D., Rayudu, V.N., Ramamurthi, V., Sivanesan, S.: Air quality monitoring in Chennai, India, in the summer of 2005. J. Hazard. Mater. 136, 589–596 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.039

    Article  Google Scholar 

  • Rengarajan, R., Sarin, M.M., Sudheer, A.K.: Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high altitude sites in North India. J. Geophys. Res.-Atmos. 112, D21307 (2007). https://doi.org/10.1029/2006JD008150

    Article  Google Scholar 

  • Saxena, P., Hildemann, L.M., McMurry, P.H., Seinfeld, J.H.: Organics alter hygroscopic behavior of atmospheric particles. J. Geophys. Res. 100, 18755–18770 (1995). https://doi.org/10.1029/95JD01835

    Article  Google Scholar 

  • Sempere, R., Kawamura, K.: Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmos. Environ. 28(3), 449–459 (1994). https://doi.org/10.1016/1352-2310(94)90123-6

    Article  Google Scholar 

  • Simoneit, B.R.: A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. Res. 6(3), 159–169 (1999)

    Article  Google Scholar 

  • Volkamer, R., Platt, U., Wirtz, K.: Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene. J. Phys. Chem. A 105, 7865e7874 (2001). https://doi.org/10.1021/jp010152w

    Article  Google Scholar 

  • Wittrock, F., Richter, A., Oetjen, H., Burrows, J.P., Kanakidou, M., Myriokefalitakis, S., Volkamer, R., Beirle, S., Platt, U., Wagner, T.: Simultaneous global observations of glyoxal and formaldehyde from spaceGeophys. Res. Lett. 33(16), (2006)

  • Wu, S.-P., James, S., Liu, B.-L., Li, T.-C., Yuan, C.-S.: Seasonal variations and source identification of selected organic acids associated with PM10 in the coastal area of Southeastern China. Atmos. Res. 155, 37e51 (2015). https://doi.org/10.1016/j.atmosres.2014.11.014

    Article  Google Scholar 

  • Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C.: Characterization of dicarboxylic acids in PM2. 5 in Hong Kong. Atmos. Environ. 38(7), 963–970 (2004). https://doi.org/10.1016/j.atmosenv.2003.10.048

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, NPL, New Delhi for all the support and encouragement. AK is thankful to University Grant Commission (UGC) for providing the fellowship under Project No. 90802 (UGC-SRF fellowship). Also, this study is in part supported by the Japanese Ministry of Education, Science, Sport and Culture (grant-in-aid No. 17340166 and 19204055), and by the Environment Research and Technology Development Fund (B-0903) of the Ministry of the Environment, Japan.We thank Prof. Rashmi Patil and Dr. G.S. Umarji, IIT-B, Mumbai for their help in sample collection. This work is a part of the collaborative research project “Molecular Characterisation and Hygroscopicity of Indian Aerosols (MOCHIA)”.

Funding

This research was supported by University Grant Commission (UGC, India) under Project No. 90802 (UGC-SRF fellowship), in part by the Japanese Ministry of Education, Science, Sport and Culture (grant-in-aid No. 17340166 and 19204055), and by the Environment Research and Technology Development Fund (B-0903) of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Contributions

AKA did data analysis and prepared draft of the manuscript. SGA conceptualized the study and performed chemical analysis, reviewed the manuscript. KS help in preparation for sampling. DS reviewed the draft manuscript. KK conceptualized the study and reviewed the manuscript.

Corresponding author

Correspondence to Shankar G. Aggarwal.

Ethics declarations

Conflicts of interest/competing interests

The authors have no competing interests to declare that are relevant to the content of this article. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alang, A.K., Aggarwal, S.G., Singh, K. et al. Water-soluble dicarboxylic acids, oxoacids and α-dicarbonyls in the tropical aerosols in coastal megacity Mumbai: molecular characteristics and formation processes. J Atmos Chem 80, 137–155 (2023). https://doi.org/10.1007/s10874-022-09442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-022-09442-3

Keywords

Navigation