Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 17, 2022

A contribution to the perrhenate crystal chemistry: the crystal structures of new CdTh[MoO4]3-type compounds

  • Dmitri O. Charkin , Pavel A. Chachin , Evgeni V. Nazarchuk and Oleg I. Siidra EMAIL logo

Abstract

Singe crystals of four new AIMII[ReO4]3 perrhenates (AI = Na, MII = Pb; AI = Na, MII = Sr, Ag, K) have been prepared from the respective AI[ReO4] and MII[ReO4]2 perrhenates using melt and solution evaporation techniques. All new compounds belong to the hexagonal CdTh[MoO4]3 structure type, similar to previously known NaCa[ReO4]3. We discuss the crystal chemical relationships within this structure type and suggest existence of some more representatives involving other tetrahedral anions.


Corresponding author: Oleg I. Siidra, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia; and Kola Science Center, Russian Academy of Sciences, Fersmana str. 14, Apatity, Murmansk Region 184209, Russia, E-mail:

Acknowledgments

We are grateful to the anonymous referee for valuable comments. Technical support by the SPbSU Resource Centers is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Barton, I. F., Rathkopf, C. A., Barton, M. D. Rhenium in molybdenite: a database approach to identifying geochemical controls on the distribution of a critical element. Mining Metall. Explor. 2020, 37, 21–37; https://doi.org/10.1007/s42461-019-00145-0.Search in Google Scholar

2. Kojonen, K. K., Roberts, A. C., Isomäki, O. P., Knauf, V. V., Johanson, B., Pakkanen, L. Tarkianite, (Cu, Fe)(Re, Mo)4S8, a new mineral species from the Hitura mine, Nivala, Finland. Can. Mineral. 2004, 42, 539–544; https://doi.org/10.2113/gscanmin.42.2.539.Search in Google Scholar

3. Chay, C., Avdeev, M., Brand, H. E. A., Injac, S., Whittle, T. A., Kennedy, B. J. Crystal structures and phase transition behaviour in the 5d transition metal oxides AReO4 (A = Ag, Na, K, Rb, Cs and Tl). Dalton Trans. 2019, 48, 17524–17532; https://doi.org/10.1039/c9dt04021h.Search in Google Scholar PubMed

4. Johnson, R. A., Rogers, M. T., Leroi, G. E. Vibrational spectra of ammonium and other scheelite type perrhenates. J. Chem. Phys. 1972, 56, 789–792; https://doi.org/10.1063/1.1677232.Search in Google Scholar

5. Zhuravlev, V. D., Reznitskikh, O. G., Velikodnyi, Yu.A., Patrusheva, T. A., Sivtsova, O. V. Analysis of solid solutions stability in scheelite-type molybdates and tungstates. J. Solid State Chem. 2011, 184, 2785–2789; https://doi.org/10.1016/j.jssc.2011.08.003.Search in Google Scholar

6. Launay, S., Rimsky, A. Structure du tris(tétraoxomolybdate) de cadmium et de thorium. Acta Crystallogr. 1980, B36, 910–912; https://doi.org/10.1107/s0567740880004815..Search in Google Scholar

7. Sedello, O., Müller-Buschbaum, H. Zur Struktur von (Cu, Mn)UMo3O12. Z. Naturforsch. 1996, 51b, 450–452.10.1515/znb-1996-0326Search in Google Scholar

8. Grupe, S., Wickleder, M. S. Der UCl3-Typ mit komplexen Anionen und seine Additions-Substitutions-Variante: Synthese und Kristallstruktur von Nd(ClO4)3 und Na0.75Nd0.75(ReO4)3. Z. Anorg. Allg. Chem. 2003, 629, 955–958; https://doi.org/10.1002/zaac.200300002.Search in Google Scholar

9. Conrad, M., Schleid, T. Single crystals of CaNa[ReO4]3: serendipitous formation and systematic characterization. Z. Anorg. Allg. Chem. 2019, 645, 1255–1261; https://doi.org/10.1002/zaac.201900189.Search in Google Scholar

10. Liu, D. M., Qian, Z. H., Zhang, Q. A. Synthesis, crystal structure, and thermal decomposition of LiCa(AlH4)3. J. Alloys Compd. 2012, 520, 202–206; https://doi.org/10.1016/j.jallcom.2012.01.011.Search in Google Scholar

11. Wang, H.-C., Zheng, J., Wu, D.-H., Wei, L.-T., Tang, B.-Y. Crystal feature and electronic structure of novel mixed alanate LiCa(AlH4)3: a density functional theory investigation. RSC Adv. 2015, 5, 16439–16445; https://doi.org/10.1039/c4ra13974g.Search in Google Scholar

12. King, J. O., Cobble, J. W. Thermodynamic properties of technetium and rhenium compounds. VI. The potential of the ReO3/ReO4− electrode and the thermodynamics of rhenium trioxide. J. Am. Chem. Soc. 1956, 79, 1559–1563; https://doi.org/10.1021/ja01564a010.Search in Google Scholar

13. Smith, W. T.Jr., Maxwell, G. E. The salts of perrhenic acid. IV. The Group II cations, copper(II) and lead(II). J. Am. Chem. Soc. 1951, 73, 658–660; https://doi.org/10.1021/ja01146a047.Search in Google Scholar

14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

15. Picard, J. P. P., Baud, G., Besse, J.-P., Chevalier, R., Gasperin, M. Structure cristalline du perrhénate de plomb Pb(ReO4)2. J. Less- Common Met. 1984, 96, 171–176; https://doi.org/10.1016/0022-5088(84)90192-9.Search in Google Scholar

16. Ait Ali Slimane, Z., Silvestre, J. P., Freundlich, W. Les perrhenates de lanthanide-sodium LnNa(ReO4)4. Rev. Chim. Miner. 1982, 19, 28–35.Search in Google Scholar

17. Silvestre, J.-P. Crystal chemistry of the lanthanide-alkaline or alkaline-earth perrhenates and some related compounds with Ag, Pb and actinides. Inorg. Chim. Acta 1984, 94, 78–79; https://doi.org/10.1016/s0020-1693(00)94544-4.Search in Google Scholar

18. Charkin, D. O., Siidra, O. I., Plokhikh, I. V., Borisov, A. S., Markovski, M. R. Litharge-derived compounds structurally based on layers of Cl− and Br−-centered tetrahedra: synthesis and structures of the new representatives of MX(ReO4) family (M = Ba, Pb; X = Cl, Br). Solid State Sci. 2021, 114, 506176; https://doi.org/10.1016/j.solidstatesciences.2021.106576.Search in Google Scholar

19. Conrad, M., Schleid, T. BaCl[ReO4] and BaBr[ReO4]: synthesis, crystal structure and properties of two mixed-anionic barium meta-perrhenates. J. Alloys Compd. 2021, 868, 159097; https://doi.org/10.1016/j.jallcom.2021.159097.Search in Google Scholar

20. Henning, H., Schleid, T. A potential redox-system captured from aqueous solution: synthesis and crystal structure of BaCl[MnO4]. Z. Kristallogr. Suppl. 2013, 33, 85–86.Search in Google Scholar

Received: 2022-07-15
Accepted: 2022-10-01
Published Online: 2022-10-17
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0043/html
Scroll to top button