Skip to main content
Log in

Pricing vulnerable basket spread options with liquidity risk

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

In this paper, we investigate the pricing of vulnerable basket options and basket spread options with stochastic liquidity risk. A liquidity-adjusted pricing model is used to incorporate liquidity risk in the market, and the default risk of option issuers is considered as well. An approximation method is applied to derive the closed-form approximated prices, and numerical experiments show that our approximated prices are quite accurate spanning different underlying asset numbers and alternative strike prices. Finally, we illustrate the effects of default risk and liquidity risk on the prices of basket and basket spread options numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31–56.

    Article  Google Scholar 

  • Amihud, Y., & Mendelson, H. (1991). Liquidity, asset prices and financial policy. Financial Analysts Journal, 47(6), 56–66.

    Article  Google Scholar 

  • Bjerksund, P., & Stensland, G. (2014). Closed form spread option valuation. Quantitative Finance, 14(10), 1785–1794.

    Article  Google Scholar 

  • Brunetti, C., & Caldarera, A. (2005). Asset Prices and Asset Correlations in Illiquid Markets. In 2005 Meeting Papers (Vol. 288). Society for Economic Dynamics.

  • Cetin, U., Jarrow, R., Protter, P., & Warachka, M. (2006). Pricing options in an extended black scholes economy with illiquidity: Theory and empirical evidence. Review of Financial Studies, 19(2), 493–529.

    Article  Google Scholar 

  • Dionne, G., Gauthier, G., & Ouertani, N. (2013). Risk management of nonstandard basket options with different underlying assets. Journal of Futures Markets, 33(4), 299–326.

    Article  Google Scholar 

  • Feng, S., Hung, M., & Wang, Y. (2014). Option pricing with stochastic liquidity risk: Theory and evidence. Journal of Financial Markets, 18, 77–95.

    Article  Google Scholar 

  • Heston, S., & Nandi, S. (2000). A closed-form garch option valuation model. Review of Financial Studies, 13(3), 585–625.

    Article  Google Scholar 

  • Jarrow, R., & Turnbull, S. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53–85.

    Article  Google Scholar 

  • Johnson, H., & Stulz, R. (1987). The pricing of options with default risk. Journal of Finance, 42(2), 267–280.

    Article  Google Scholar 

  • Kirk, E., & Aron, J. (1995). Correlation in the energy markets. Managing Energy Price Risk, 1, 71–78.

    Google Scholar 

  • Klein, P. (1996). Pricing Black-Scholes options with correlated credit risk. Journal of Banking and Finance, 20(7), 1211–1229.

    Article  Google Scholar 

  • Lau, C., & Lo, C. (2014). The pricing of basket-spread options. Quantitative Finance, 14(11), 1971–1982.

    Article  Google Scholar 

  • Leippold, M., & Schärer, S. (2017). Discrete-time option pricing with stochastic liquidity. Journal of Banking and Finance, 75, 1–16.

    Article  Google Scholar 

  • Li, M., Deng, S., & Zhou, J. (2008). Closed-form approximations for spread option prices and greeks. Journal of Derivatives, 15(3), 58–80.

    Article  Google Scholar 

  • Li, M., Zhou, J., & Deng, S. (2010). Multi-asset spread option pricing and hedging. Quantitative Finance, 10(3), 305–324.

    Article  Google Scholar 

  • Li, Z., & Wang, X. (2020). Valuing spread options with counterparty risk and jump risk. North American Journal of Economics and Finance, 54, 101269.

    Article  Google Scholar 

  • Ma, Y., Shrestha, K., & Xu, W. (2017). Pricing vulnerable options with jump clustering. Journal of Futures Markets, 37(12), 1155–1178.

    Article  Google Scholar 

  • Madan, D. (2010). Conserving capital by adjusting deltas for gamma in the presence of skewness. Journal of Risk and Financial Management, 3(1), 1–25.

    Article  Google Scholar 

  • Pástor, L., & Stambaugh, R. (2003). Liquidity risk and expected stock returns. Journal of Political Economy, 111(3), 642–685.

    Article  Google Scholar 

  • Poitras, G. (1998). Spread options, exchange options, and arithmetic Brownian motion. Journal of Futures Markets, 18(5), 487–517.

    Article  Google Scholar 

  • Shephard, N. (1991). From characteristic function to distribution function: A simple framework for the theory. Econometric Theory, 7(4), 519–529.

    Article  Google Scholar 

  • Shiu, Y., Chou, P., & Sheu, J. (2013). A closed-form approximation for valuing European basket warrants under credit risk and interest rate risk. Quantitative Finance, 13(8), 1211–1223.

    Article  Google Scholar 

  • Turnbull, S., & Wakeman, L. (1991). A quick algorithm for pricing European average options. Journal of Financial and Quantitative Analysis, 26(3), 377–389.

    Article  Google Scholar 

  • Vorst, T. (1992). Prices and hedge ratios of average exchange rate options. International Review of Financial Analysis, 1(3), 179–193.

    Article  Google Scholar 

  • Wang, X. (2021). Valuation of options on the maximum of two prices with default risk under garch models. North American Journal of Economics and Finance, 57, 101422.

    Article  Google Scholar 

  • Wang, X. (2022a). Pricing european basket warrants with default risk under stochastic volatility models. Applied Economics Letters, 29(3), 253–260.

    Article  Google Scholar 

  • Wang, X., Song, S., & Wang, Y. (2017). The valuation of power exchange options with counterparty risk and jump risk. Journal of Futures Markets, 37(5), 499–521.

    Article  Google Scholar 

  • Wang, X. (2022b). Pricing vulnerable options with stochastic liquidity risk. North American Journal of Economics and Finance, 60, 101637. https://doi.org/10.1016/j.najef.2021.101637

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the editor for their helpful comments and valuable suggestions that led to several important improvements. All errors are our own responsibility.

Funding

The authors have no relevant financial or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Tang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivations of the explicit expressions of \(f(\phi _1,\phi _2)\) and \(g(\phi _3,\phi _4,\phi _5)\):

Here we first derive the explicit expression of \(f(\phi _1,\phi _2)\) defined in (10). (5) and (6) lead to

$$\begin{aligned} \ln S_i(T)= & {} \ln S_i(0)+rT+\vartheta _i\sigma _iB_i^Q(t)-\frac{1}{2}\vartheta _i^2\sigma _i^2T+\beta _i\int _{0}^{T}a(t){\mathrm {d}}W^Q(t)-\frac{1}{2}\beta _i^2\int _{0}^{T}a(t)^2 {\mathrm {d}}t,\\ \ln V(T)= & {} \ln V(0)+rT+\vartheta _0\sigma _0B_0^Q(t)-\frac{1}{2}\vartheta _0^2\sigma _0^2T+\beta _0\int _{0}^{T}a(t){\mathrm {d}}W^Q(t)-\frac{1}{2}\beta _0^2\int _{0}^{T}a(t)^2 {\mathrm {d}}t. \end{aligned}$$

Because \(GK(T)=\prod _{i=1}^{n}S_i(T)^{\omega _i}\), we have that

$$\begin{aligned} \begin{aligned} \ln GK(T)=\ln \prod _{i=1}^{n}S_i(T)^{\omega _i}=\sum _{i=1}^{n}\omega _i\ln S_i(T). \end{aligned} \end{aligned}$$

Therefore, one gets that

$$\begin{aligned} f(\phi _1,\phi _2)= & {} E^Q[GK(T)^{\phi _1}V(T)^{\phi _2}] \nonumber \\= & {} E^Q[e^{\phi _1\ln GK(T)+\phi _2\ln V(T)}] \nonumber \\= & {} e^{H_0(\phi _1,\phi _2)}E^Q[e^{H_1(\phi _1,\phi _2)}]E^Q[e^{H_2(\phi _1,\phi _2)}], \end{aligned}$$
(17)

where

$$\begin{aligned} H_0(\phi _1,\phi _2)= & {} \phi _1\ln GK(0)+\phi _2\ln V(0)+(\phi _1+\phi _2)rT-\frac{1}{2}(\phi _1(\sum _{i=1}^{n}\omega _i\vartheta _i^2\sigma _i^2)+\phi _2\vartheta _0^2\sigma _0^2)T,\nonumber \\ H_1(\phi _1,\phi _2)= & {} \phi _1\sum _{i=1}^{n}\omega _i\vartheta _i\sigma _iB_i^Q(T)+\phi _2\vartheta _0\sigma _0B_0^Q(T),\nonumber \\ H_2(\phi _1,\phi _2)= & {} (\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\int _{0}^{T}a(t){\mathrm {d}}W^Q(t)\nonumber \\&\ \ \ \ -\frac{1}{2}(\phi _1\sum _{i=1}^{n}\omega _i\beta _i^2+\phi _2\beta _0^2)\int _{0}^{T}a(t)^2{\mathrm {d}}t. \end{aligned}$$
(18)

Note that \(B^Q_i(T)\) and \(B^Q_0(T)\) are standard Brownian motions with correlation coefficient \(\rho _i\). Meanwhile, for \(i, j=1,\ldots ,n, i\ne j\), \(B^Q_i(T)\) and \(B^Q_j(T)\) are correlated to each other with correlation coefficient \(\rho _{ij}\). Then we can obtain the following result easily,

$$\begin{aligned} E^Q[e^{ H_1(\phi _1,\phi _2)}]= & {} E^Q[e^{\phi _1\sum _{i=1}^{n}\omega _i\vartheta _i\sigma _iB_i^Q(T)+\phi _2\vartheta _0\sigma _0B_0^Q(T)}]\\= & {} e^Y\nonumber . \end{aligned}$$
(19)

where

$$\begin{aligned} Y= & {} \frac{1}{2}{\phi _1^2[\sum _{i=1}^{n}\omega _i^2\vartheta _i^2\sigma _i^2T +2\sum _{i=1}^{n}\sum _{j=1}^{n}\omega _i\omega _j\vartheta _i\vartheta _j\sigma _i\sigma _j\rho _{ij}T] +\phi _1\phi _2\vartheta _0\sigma _0\sum _{i=1}^{n}\omega _i\vartheta _i\sigma _i\rho _iT+\frac{1}{2}\phi _2^2\vartheta _0^2\sigma _0^2T}. \end{aligned}$$

Next, we will deal with the term \(E^Q[e^{ H_2(\phi _1,\phi _2)}]\). Because \(W^Q(t)\) and \(M^Q(t)\) are standard Brownian motions with correlation coefficient \(\rho\), we rewrite \(W^Q(t)\) as,

$$\begin{aligned} W^Q(t)=\rho M^Q(t)+\sqrt{1-\rho ^2} \tilde{M}^Q(t), \end{aligned}$$
(20)

where \(M^Q(t)\) and \(\tilde{M}^Q(t)\) are independent Brownian motions. Substitute this into (18) and it yields that

$$\begin{aligned} H_2(\phi _1,\phi _2)= & {} (\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\int _{0}^{T}a(t){\mathrm {d}}W^Q(t)-\frac{1}{2}(\phi _1\sum _{i=1}^{n}\omega _i\beta _i^2+\phi _2\beta _0^2)\int _{0}^{T}a(t)^2{\mathrm {d}}t\nonumber \\= & {} (\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho \int _{0}^{T}a(t){\mathrm {d}}M^Q(t)+(\phi _1\sum _{i=1}^{n}\omega _i\beta _i\nonumber \\&+\phi _2\beta _0)\sqrt{1-\rho ^2}\int _{0}^{T}a(t){\mathrm {d}}{\tilde{M}}^Q(t)\nonumber \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\frac{1}{2}(\phi _1\sum _{i=1}^{n}\omega _i\beta _i^2+\phi _2\beta _0^2)\int _{0}^{T}a(t)^2{\mathrm {d}}t. \end{aligned}$$
(21)

From the dynamics of a(t) in (5), using Itô formula, we can obtain that

$$\begin{aligned} {\mathrm {d}}a(t)^2= & {} 2 a(t){\mathrm {d}}a(t)+ \sigma _a^2{\mathrm {d}}t\\= & {} 2 \tilde{\kappa }_a a(t) (\tilde{\theta }_a-a(t)){\mathrm {d}}t+2 \sigma _a a(t){\mathrm {d}}M^Q(t)+ \sigma _a^2{\mathrm {d}}t, \end{aligned}$$

which in turn implies that

$$\begin{aligned} \int _0^T a(t){\mathrm {d}}M^Q(t)=\frac{1}{2 \sigma _a}\Big (a(T)^2-a(0)^2- 2 \tilde{\kappa }_a \int _0^T a(t) (\tilde{\theta }_a-a(t)){\mathrm {d}}t -\sigma _a^2 T\Big ). \end{aligned}$$

With the above equality, we can continue to rewrite \(H_2(\phi _1,\phi _2)\) in (21) as follows,

$$\begin{gathered} H_{2} (\phi _{1} ,\phi _{2} ) = \left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\rho \int_{0}^{T} a (t){\text{d}}M^{Q} (t) + \left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\sqrt {1 - \rho ^{2} } \int_{0}^{T} a (t){\text{d}}\tilde{M}^{Q} (t) - \frac{1}{2}\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i}^{2} + \phi _{2} \beta _{0}^{2} } \right)\int_{0}^{T} a (t)^{2} {\text{d}}t \hfill \\ = \frac{{\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\rho }}{{2\sigma _{a} }}\left( {(a(T)^{2} - a(0)^{2} - 2\tilde{\kappa }_{a} \int_{0}^{T} a (t)\left( {\tilde{\theta }_{a} - a(t))dt - \sigma _{a}^{2} T} \right)} \right)\;\; \hfill \\ + (\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} )\sqrt {1 - \rho ^{2} } \int_{0}^{T} a (t)d\tilde{M}^{Q} (t) - \frac{1}{2}\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i}^{2} + \phi _{2} \beta _{0}^{2} } \right)\int_{0}^{T} a (t)^{2} {\text{d}}t \hfill \\ = - \frac{{\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\rho }}{{2\sigma _{a} }}(a(0)^{2} + \sigma _{a}^{2} T) + \frac{{\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\rho }}{{2\sigma _{a} }}a(T)^{2} \;\; - \frac{{\tilde{\kappa }_{a} \tilde{\theta }_{a} (\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} )\rho }}{{\sigma _{a} }}\int_{0}^{T} a (t)dt \hfill \\ + \left( {\frac{{\tilde{\kappa }_{a} \left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\rho }}{{\sigma _{a} }}\;\; - \frac{1}{2}\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i}^{2} + \phi _{2} \beta _{0}^{2} } \right)} \right)\int_{0}^{T} a (t)^{2} {\text{d}}t \hfill \\ + \left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\sqrt {1 - \rho ^{2} } \int_{0}^{T} a (t){\text{d}}\tilde{M}^{Q} (t). \hfill \\ \end{gathered}$$

Note that a(t) is driven by \(M^Q(t)\), which is independent of \(\tilde{M}^Q(t)\). Denote by \(\sigma ( a(t))_{\{0\le t\le T\}}\) the \(\sigma\)-field generated by a(t) and one can easily obtain the following result,

$$\begin{aligned} E^{Q} [e^{{H_{2} (\phi _{1} ,\phi _{2} )}} ] = E^{Q} \left[ {\exp \left\{ { - \frac{{(\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} )\rho }}{{2\sigma _{a} }}(a(0)^{2} + \sigma _{a}^{2} T) + \frac{{(\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} )\rho }}{{2\sigma _{a} }}a(T)^{2} - \frac{{\tilde{\kappa }_{a} \tilde{\theta }_{a} (\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} )\rho }}{{\sigma _{a} }}\int_{0}^{T} a (t){\rm{d}}t + \left( {\frac{{\tilde{\kappa }_{a} (\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} )\rho }}{{\sigma _{a} }} - \frac{1}{2}\left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i}^{2} + \phi _{2} \beta _{0}^{2} } \right))} \right)\int_{0}^{T} a (t)^{2} {\rm{d}}t + \left( {\phi _{1} \sum\limits_{{i = 1}}^{n} {\omega _{i} } \beta _{i} + \phi _{2} \beta _{0} } \right)\sqrt {1 - \rho ^{2} } \int_{0}^{T} a (t){\rm{d}}\tilde{M}^{Q} (t)} \right\}} \right] \nonumber \\= & {} E^Q\Big [\exp \Big \{-\frac{(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{2\sigma _a}(a(0)^2+\sigma _a^2T)\nonumber \\&+\frac{(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{2\sigma _a}a(T)^2 -\frac{\tilde{\kappa }_a\tilde{\theta }_a(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{\sigma _a}\int _{0}^{T}a(t){\mathrm {d}}t\nonumber \\&+\Big (\frac{\tilde{\kappa }_a(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{\sigma _a} -\frac{1}{2}\left(\phi _1\sum _{i=1}^{n}\omega _i\beta _i^2+\phi _2\beta _0^2\right)\Big )\int _0^T a(t)^2{\mathrm {d}}t\Big \}\nonumber \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times E^Q\Big [e^{(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\sqrt{1-\rho ^2}\int _0^T a(t){\mathrm {d}}\tilde{M}^Q(t)}\Big |\sigma (a(t))_{\{0\le t\le T\}}\Big ]\Big ]\nonumber \\= & {} E^Q\Big [\exp \Big \{-\frac{(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{2\sigma _a}\Big (a(0)^2+\sigma _a^2T\Big )\nonumber \\&+\frac{(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{2\sigma _a}a(T)^2\nonumber \\&\ \ \ -\frac{\tilde{\kappa }_a\tilde{\theta }_a\left(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0\right)\rho }{\sigma _a}\int _{0}^{T}a(t){\mathrm {d}}t\nonumber \\&+\Big (\frac{\tilde{\kappa }_a\left(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0\right)\rho }{\sigma _a}\nonumber \\&\ \ \ -\frac{1}{2}\left(\phi _1\sum _{i=1}^{n}\omega _i\beta _i^2+\phi _2\beta _0^2\right)+\frac{1}{2}\left(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0\right)^2(1-\rho ^2)\Big )\int _0^T a(t)^2{\mathrm {d}}t\Big \}\Big ]\nonumber \\= & {} e^{-\frac{\left(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0\right)\rho }{2\sigma _a}(a(0)^2+\sigma _a^2T)}E^Q\Big [\exp \Big \{\frac{(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{2\sigma _a}a(T)^2\nonumber \\&\ \ \ -\frac{\tilde{\kappa }_a\tilde{\theta }_a(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{\sigma _a}\int _0^T a(t) {\mathrm {d}}t\nonumber \\&\ \ \ +\Big (\frac{\tilde{\kappa }_a(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)\rho }{\sigma _a}-\frac{1}{2}(\phi _1\sum _{i=1}^{n}\omega _i\beta _i^2+\phi _2\beta _0^2)\\&\ \ \ +\frac{1}{2}(\phi _1\sum _{i=1}^{n}\omega _i\beta _i+\phi _2\beta _0)^2(1-\rho ^2))\int _0^T a(t)^2{\mathrm {d}}t\Big \}\Big ]\nonumber . \end{aligned}$$
(22)

The expectation in the above equality has the form of \(E^Q\Big [\exp \{\omega _1\int _0^T a(t)^2{\mathrm {d}}t + \omega _2\int _0^T a(t){\mathrm {d}}t +\omega _3a(T)^2\}]\), which is the same as (A7) and (A11) in Feng et al. (2014). Since the dynamics of a(t) in (5) are Gaussian Ornstein-Uhlenbeck processes in essence, the closed-form expressions can be derived. Here we choose to omit them and refer to Feng et al. (2014) for more details. By far, we have obtained the explicit expression of \(f(\phi _1,\phi _2)\).

Now we turn to derive the expression of \(g(\phi _3,\phi _4,\phi _5)\). Using the method we just used, we have that

$$\begin{gathered} g(\phi _{3} ,\phi _{4} ,\phi _{5} ) = E^{Q} [(\prod\limits_{{i = 1}}^{m} {S_{i} } (T)^{{q_{i} }} )^{{\phi _{3} }} (\prod\limits_{{i = m + 1}}^{n} {S_{i} } (T)^{{p_{i} }} )^{{\phi _{4} }} V(T)^{{\phi _{5} }} ] \hfill \\ \quad \quad \quad \quad \;\; = E^{Q} \left[ {e^{{\phi _{3} \ln (\prod\limits_{{i = 1}}^{m} {S_{i} } (T)^{{q_{i} }} ) + \phi _{4} \ln (\prod\limits_{{i = m + 1}}^{n} {S_{i} } (T)^{{p_{i} }} ) + \phi _{5} \ln V(T)}} } \right] \hfill \\ \quad \quad \quad \quad \;\; = e^{{H_{3} (\phi _{3} ,\phi _{4} ,\phi _{5} )}} E^{Q} [e^{{H_{4} (\phi _{3} ,\phi _{4} ,\phi _{5} )}} ]E^{Q} [e^{{H_{5} (\phi _{3} ,\phi _{4} ,\phi _{5} )}} ], \hfill \\ \end{gathered}$$
(23)

where

$$\begin{aligned} H_{3} (\phi _{3} ,\phi _{4} ,\phi _{5} ) = & \phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \ln S_{i} (0) + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \ln S_{i} (0) + \phi _{5} \ln V(0) + \left( {\phi _{3} + \phi _{4} + \phi _{5} } \right)rT \\ - & \frac{1}{2}\left( {\phi _{3} \left( {\sum\limits_{{i = 1}}^{m} {q_{i} } \vartheta _{i}^{2} \sigma _{i}^{2} } \right) + \phi _{4} \left( {\sum\limits_{{i = m + 1}}^{n} {p_{i} } \vartheta _{i}^{2} \sigma _{i}^{2} } \right) + \phi _{5} \vartheta _{0}^{2} \sigma _{0}^{2} } \right)T,H_{4} (\phi _{3} ,\phi _{4} ,\phi _{5} ) \\ = & \phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \vartheta _{i} \sigma _{i} B_{i}^{Q} (T) + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \vartheta _{i} \sigma _{i} B_{i}^{Q} (T) + \phi _{5} \vartheta _{0} \sigma _{0} B_{0}^{Q} (T),H_{5} (\phi _{3} ,\phi _{4} ,\phi _{5} ) \\ = & \left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i} + \phi _{5} \beta _{0} } \right)\int_{0}^{T} a (t){\text{d}}W^{Q} (t) \\ - & \frac{1}{2}\left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i}^{2} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i}^{2} + \phi _{5} \beta _{0}^{2} } \right)\int_{0}^{T} a (t)^{2} {\text{d}}t. \\ \end{aligned}$$
(24)

Similarly, we have that

$$E^{Q} [e^{{H_{4} (\phi _{3} ,\phi _{4} ,\phi _{5} )}} ] = \;E^{Q} \left[ {e^{{\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \vartheta _{i} \sigma _{i} B_{i}^{Q} (T) + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \vartheta _{i} \sigma _{i} B_{i}^{Q} (T) + \phi _{5} \vartheta _{0} \sigma _{0} B_{0}^{Q} (T)}} } \right] = {\text{ }}e^{{Y_{1} }} ,$$
(25)

where

$$\begin{aligned} Y_1= & {} \frac{1}{2}\Big (\phi _3^2[\sum _{i=1}^{m}q_i^2\vartheta _i^2\sigma _i^2T+\sum _{i=1}^{m}\sum _{j=1}^{m}q_iq_j\vartheta _i\vartheta _j\sigma _i\sigma _j\rho _{ij}T]+2\phi _3\phi _4\sum _{i=1}^{m}\sum _{k=m+1}^{n}q_ip_j\vartheta _i\vartheta _k\sigma _i\sigma _k\rho _{ik}T\\&+2\phi _3\phi _5\vartheta _0\sigma _0\sum _{i=1}^{m}q_i\vartheta _i\sigma _i\rho _iT+\phi _4^2[\sum _{i=m+1}^{n}p_i^2\vartheta _i^2\sigma _i^2T+\sum _{i=m+1}^{n}\sum _{j=m+1}^{n}p_ip_j\vartheta _i\vartheta _j\sigma _i\sigma _j\rho _{ij}T]\\&+2\phi _4\phi _5\vartheta _0\sigma _0\sum _{i=m+1}^{n}p_i\vartheta _i\sigma _i\rho _iT+\phi _5^2\vartheta _0^2\sigma _0^2T\Big ). \end{aligned}$$

Additionally, one can get that

$$\begin{aligned} E^{Q} [e^{{H_{5} (\phi _{3} ,\phi _{4} ,\phi _{5} )}} ] = & e^{{ - \frac{{\left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i} + \phi _{5} \beta _{0} } \right)\rho }}{{2\sigma _{a} }}\left( {a(0)^{2} + \sigma _{a}^{2} T} \right)}} E^{Q}\Big [\exp \{ \frac{{\left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i} + \phi _{5} \beta _{0} } \right)\rho }}{{2\sigma _{a} }}a(T)^{2} \\ & - \frac{{\tilde{\kappa }_{a} \tilde{\theta }_{a} \left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i} + \phi _{5} \beta _{0} } \right)\rho }}{{\sigma _{a} }}\int_{0}^{T} a (t){\text{d}}t \\ & + \Big (\frac{{\tilde{\kappa }_{a} \left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i} + \phi _{5} \beta _{0} } \right)\rho }}{{\sigma _{a} }} \\ & - \frac{1}{2}\left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i}^{2} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i}^{2} + \phi _{5} \beta _{0}^{2} } \right) \\ & + \frac{1}{2}\left( {\phi _{3} \sum\limits_{{i = 1}}^{m} {q_{i} } \beta _{i} + \phi _{4} \sum\limits_{{i = m + 1}}^{n} {p_{i} } \beta _{i} + \phi _{5} \beta _{0} } \right)^{2} (1 - \rho ^{2} ))\int_{0}^{T} a (t)^{2} {\text{d}}t\Big )\Big \}\Big ]. \\ \end{aligned}$$

Proof of Proposition 2.1:

In order to derive the explicit expression of \(C_0\) in (7), we first rewrite it in the following form,

$$\begin{aligned} C_0= & {} e^{-rT}E^Q\Big [\max \Big \{GK(T)-K^*,0\Big \}\Big (\mathbf {1}(V(T)\ge D)+\frac{\alpha V(T)}{D}\mathbf {1}(V(T)< D)\Big )\Big ]\nonumber \\= & {} e^{-rT}\Big (A_1-K^**A_2+\frac{\alpha }{D}*(A_3 -K^**A_4)\Big ), \end{aligned}$$
(26)

where

$$\begin{aligned} A_1= & {} E^Q\Big [GK(T)I(GK(T)\ge K^*,V(T)\ge D)\Big ], \end{aligned}$$
(27)
$$\begin{aligned} A_2= & {} E^Q\Big [I(GK(T)\ge K^*,V(T)\ge D)\Big ], \end{aligned}$$
(28)
$$\begin{aligned} A_3= & {} E^Q\Big [GK(T)V(T)I(GK(T)\ge K^*,V(T)< D)\Big ], \end{aligned}$$
(29)
$$\begin{aligned} A_4= & {} E^Q\Big [V(T)I(GK(T)\ge K^*,V(T)< D)\Big ]. \end{aligned}$$
(30)

In what follows, we apply the measure change technique to get the pricing formula (see, e.g., Heston and Nandi, 2000; Wang, 2021).

Actually, \(A_2\) can be obtained directly by using standard probability theory (see, e.g., Shephard, 1991) by noting that \(f(i\phi _1,i\phi _2)\) is the joint characteristic function of \(\ln GK(T)\) and \(\ln V(T)\) under Q, i.e.,

$$\begin{aligned} A_2= & {} E^Q\Big [I(GK(T)\ge K^*,V(T)\ge D)\Big ]\nonumber \\= & {} Q\Bigg (\ln GK(T)\ge \ln K^*,\ln V(T)\ge \ln D\Big )\nonumber \\= & {} \frac{1}{4}+\frac{1}{2\pi }\int _{0}^{\infty } \text {Re}\Big [\frac{e^{-i\phi _1\ln K^*}f(i\phi _1,0)}{i\phi _1}\Big ]{\mathrm {d}}\phi _1+\frac{1}{2\pi }\int _{0}^{\infty }\text {Re}\Big [\frac{e^{-i\phi _2\ln D}f(0,i\phi _2)}{i\phi _2}\Big ]{\mathrm {d}}\phi _2\nonumber \\&- \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( {{\text{Re}}\left[ {\frac{{e^{{ - i\phi _{1} \ln K^{*} - i\phi _{2} \ln D}} f(i\phi _{1} ,i\phi _{2} )}}{{\phi _{1} \phi _{2} }}} \right]} \right.} } \hfill \\& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. { - {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{1} \ln K^{*} + i\phi _{2} \ln D}} f(i\phi _{1} , - i\phi _{2} )}}{{\phi _{1} \phi _{2} }}} \right]} \right){\text{d}}\phi _{1} {\text{d}}\phi _{2} . \hfill \\ \end{aligned}$$
(31)

To obtain \(A_1\), we introduce a new probability measure \(Q_1\) which is defined by

$$\begin{aligned} Q_1(\Gamma )=\frac{E^Q\Big [e^{\ln (GK(T))}I(\Gamma )\Big ]}{E^Q\Big [e^{\ln GK(T)}\Big ]} \end{aligned}$$

for any events \(\Gamma \in \mathscr {F}_{T}\). Again using standard probability theory, we have that

$$\begin{aligned} A_{1} & = E^{Q} \left[ {GK\left( T \right)I\left( {GK\left( T \right) \ge K^{*} ,V\left( T \right) \ge D} \right)} \right] \\ & = f\left( {1,0} \right)E^{{Q_{1} }} \left[ {I\left( {GK\left( T \right) \ge K^{*} ,V\left( T \right) \ge D} \right)} \right] \\ & = f(1,0)Q_{1} \left( {\ln GK\left( T \right) \ge \ln K^{*} ,\ln V\left( T \right) \ge \ln D} \right) \\ & = \frac{1}{4}f\left( {1,0} \right) + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{ - i\phi _{1} \ln K^{*} }} f(i\phi _{1} + 1,0)}}{{i\phi _{1} }}} \right]{\text{d}}\phi _{1} + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{ - i\phi _{2} \ln D}} f(1,i\phi _{2} )}}{{i\phi _{2} }}} \right]{\text{d}}\phi _{2} \\ & \quad - \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( \begin{gathered} {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{1} \ln K^{*} - i\phi _{2} \ln D}} f(i\phi _{1} + 1,i\phi _{2} )}}{{\phi _{1} \phi _{2} }}} \right] \hfill \\ - {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{1} \ln K^{*} + i\phi _{2} \ln D}} f(i\phi _{1} + 1, - i\phi _{2} )}}{{\phi _{1} \phi _{2} }}} \right] \hfill \\ \end{gathered} \right)} } {\text{d}}\phi _{1} {\text{d}}\phi _{2} , \\ \end{aligned}$$
(32)

where we have used the fact that the joint characteristic function of \(\ln GK(T)\) and \(\ln V(T)\) under \(Q_1\) is given by

$$\begin{aligned} E^{Q_1}\Big [e^{i\phi _1\ln GK(T)+i\phi _2\ln V(T)}\Big ]= & {} \frac{f(0,i\phi _1+1,i\phi _2)}{f(1,0)}. \end{aligned}$$

Then we calculate \(A_3\) and \(A_4\) similarly, and the results are listed below,

$$\begin{aligned} A_3= & {} E^Q\Big [GK(T)V(T)I(GK(T)\ge K^*,V(T)< D)\Big ]\nonumber \\= & {} E^Q\Big [GK(T)V(T)I(\ln GK(T)\ge \ln K^*,-\ln V(T)>-\ln D)\Big ]\nonumber \\= & {} \frac{1}{4}f(1,1)+\frac{1}{2\pi }\int _{0}^\infty \text {Re}\Big [\frac{e^{-i \phi _1 \ln K^*}f(i\phi _1+1,1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1\nonumber \\&+\frac{1}{2\pi }\int _{0}^\infty \text {Re}\Big [\frac{e^{i \phi _2 \ln D}f(1,-i\phi _2+1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2\nonumber \\&-\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\text {Re}\Big [\frac{e^{-i \phi _1 \ln K^*+i \phi _2 \ln D}f(i\phi _1+1,-i\phi _2+1)}{ \phi _1 \phi _2}\Big ]\nonumber \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\text {Re}\Big [\frac{e^{-i \phi _1 \ln K^*-i \phi _2 \ln D}f(i\phi _1+1,i\phi _2+1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2, \end{aligned}$$
(33)

and

$$\begin{aligned} A_4= & {} E^Q\Big [V(T)I(GK(T)\ge K^*,V(T)< D)\Big ]\nonumber \\= & {} E^Q\Big [V(T)I(\ln GK(T)\ge \ln K^*,-\ln V(T)>-\ln D)\Big ]\nonumber \\= & {} \frac{1}{4}f(0,1)+\frac{1}{2\pi }\int _{0}^\infty \text {Re}\Big [\frac{e^{-i \phi _1 \ln K^*}f(i\phi _1,1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1\nonumber \\&+\frac{1}{2\pi }\int _{0}^\infty \text {Re}\Big [\frac{e^{i \phi _2 \ln D}f(0,-i\phi _2+1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2\nonumber \\&-\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\text {Re}\Big [\frac{e^{-i \phi _1 \ln K^*+i \phi _2 \ln D}f(i\phi _1,-i\phi _2+1)}{ \phi _1 \phi _2}\Big ]\nonumber \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\text {Re}\Big [\frac{e^{-i \phi _1 \ln K^*-i \phi _2 \ln D}f(i\phi _1,i\phi _2+1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2. \end{aligned}$$
(34)

This completes the proof of Proposition 2.1. \(\square\)

Proof of Proposition 2.2:

Let us rewrite the event \(\Xi\) we have defined before,

$$\begin{aligned} \Xi =\Big \{w:\frac{\prod _{i=1}^{m}S_i(T)^{q_i}}{\Big (\prod _{i=m+1}^{n}S_i(T)^{p_i}\Big )^\gamma }>\frac{e^u}{E^Q\Big [\Big (\prod _{i=m+1}^{n}S_i(T)^{p_i}\Big )^\gamma \Big ]}\Big \}. \end{aligned}$$

Then we can have that

$$\begin{aligned} \Xi= & {} \Big \{w:\frac{\prod _{i=1}^{m}S_i(T)^{q_i}}{\Big (\prod _{i=m+1}^{n}S_i(T)^{p_i}\Big )^\gamma }>\frac{e^u}{E^Q\Big [\Big (\prod _{i=m+1}^{n}S_i(T)^{p_i}\Big )^\gamma \Big ]}\Big \}\\= & {} \Big \{w:\frac{e^{q_i\sum _{i=1}^{m}\ln S_i(T)}}{\Big (e^{\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\Big )}>\frac{e^u}{f(0,\gamma ,0)}\Big \}\\= & {} \Big \{w:e^{q_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}>\frac{e^u}{f(0,\gamma ,0)}\Big \}. \end{aligned}$$

Set \(R=\frac{e^u}{f(0,\gamma p_i,0)}\), and \(\Xi\) can be reformed as

$$\begin{aligned} \Xi= & {} \Big \{w:q_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)>\ln R\Big \}. \end{aligned}$$

Then rewrite the price of basket spread options in the following form,

$$\begin{aligned} C_0'= & {} e^{-rT}E^Q\Big [\mathop {\max }\Big \{\prod _{i=1}^{m}S_i(T)^{q_i}-\prod _{i=m+1}^{n}S_i(T)^{p_i}-K',0\Big \}\times \mathbf {1}(\Xi )\nonumber \\&\Big (\mathbf {1}(V(T)\ge D)+\frac{\alpha V(T)}{D}\mathbf {1}(V(T)<D)\Big )\Big ]. \end{aligned}$$
(35)

With

$$\begin{aligned} G_1= & {} E^Q\Big [\prod _{i=1}^{m}S_i(T)^{q_i}\times \mathbf {1}(\Xi )\Big ],\\ G_2= & {} E^Q\Big [\prod _{i=m+1}^{n}S_i(T)^{p_i}\times \mathbf {1}(\Xi )\Big ],\\ G_3= & {} E^Q\Big [\mathbf {1}(\Xi )\Big ], \end{aligned}$$

we can rewrite \(C_0'\) as follows,

$$\begin{aligned} C_0'=e^{-rT}\Big (G_1-G_2-K'G_3\Big )E^Q\Big [\Big (\mathbf {1}(V(T)\ge D)+\frac{\alpha V(T)}{D}\mathbf {1}(V(T)<D)\Big )\Big ]. \end{aligned}$$

According to the above equation, we can set

$$\begin{aligned} G_4= & {} E^Q\Big [\prod _{i=1}^{m}S_i(T)^{q_i}\mathbf {1}(e^{t_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\ge R,V(T)\ge D)\Big ],\\ G_5= & {} E^Q\Big [\prod _{i=1}^{m}S_i(T)^{q_i}V(T)\mathbf {1}(e^{t_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\ge R,V(T)< D)\Big ],\\ G_6= & {} E^Q\Big [\prod _{i=m+1}^{n}S_i(T)^{p_i}\mathbf {1}(e^{t_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\ge R,V(T)\ge D)\Big ],\\ G_7= & {} E^Q\Big [\prod _{i=m+1}^{n}S_i(T)^{p_i}V(T)\mathbf {1}(e^{t_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\ge R,V(T)< D)\Big ],\\ G_8= & {} E^Q\Big [\mathbf {1}(e^{q_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\ge R,V(T)\ge D)\Big ],\\ G_9= & {} E^Q\Big [V(T)\mathbf {1}(e^{q_i\sum _{i=1}^{m}\ln S_i(T)-\gamma p_i\sum _{i=m+1}^{n}\ln S_i(T)}\ge R,V(T)< D)\Big ]. \end{aligned}$$

Then we define probability measures \(Q_2\), \(Q_3\) and \(Q_4\) as:

$$\begin{aligned} Q_2(O)= & {} \frac{E^Q[\mathbf {1}(O)e^{\ln \prod _{i=1}^{m}S_i(T)^{q_i}}]}{E^Q[e^{\ln \prod _{i=1}^{m}S_i(T)^{q_i}}]},\\ Q_3(O)= & {} \frac{E^Q[\mathbf {1}(O)e^{\ln \prod _{i=m+1}^{n}S_i(T)^{p_i}}]}{E^Q[e^{\ln \prod _{i=m+1}^{n}S_i(T)^{p_i}}]},\\ Q_4(O)= & {} \frac{E^Q[\mathbf {1}(O)e^{\ln V(T)}]}{E^Q[e^{\ln V(T)}]}. \end{aligned}$$

We start with \(G_8(T)\) and \(G_9(T)\). From the same method above and the probability measure \(Q_4\), we can have that

$$\begin{aligned} G_{8} &= E^{Q} \left[ {1(e^{{q_{i} \sum\limits_{{i = 1}}^{m} {\ln } \;S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } \;S_{i} (T)}} \ge R,V(T) \ge D)} \right] \\ &= Q\left( {q_{i} \sum\limits_{{i = 1}}^{m} {\ln } \;S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln \;} S_{i} (T) > \ln R,\ln V(T) \ge \ln D} \right) \\ &= \frac{1}{4} + \frac{1}{{2\pi }}\int_{0}^{\infty } {\text{Re} } \left[ {\frac{{e^{{ - i\phi _{3} \ln R}} g(i\phi _{3} , - \gamma i\phi _{3} ,0)}}{{i\phi _{3} }}} \right]d\phi _{3} + \frac{1}{{2\pi }}\int_{0}^{\infty } {\text{Re} } \left[ {\frac{{e^{{ - i\phi _{5} \ln D}} g(0,0,i\phi _{5} )}}{{i\phi _{5} }}} \right]d\phi _{5} \\ &\quad - \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\text{Re} \left( {\left[ {\frac{{e^{{ - i\phi _{3} \ln R - i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} ,i\phi _{5} )}}{{\phi _{3} \phi _{5} }}} \right]\; - \text{Re} \left[ {\frac{{e^{{ - i\phi _{3} \ln R + i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} , - i\phi _{5} )}}{{\phi _{3} \phi _{5} }}} \right]} \right)} } d\phi _{3} d\phi _{5} , \\ \end{aligned}$$
(36)

and

$$\begin{aligned}G_{8} = {\text{ }}amp;E^{Q} [{\mathbf{1}}(e^{{q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)}} \ge R,V(T) \ge D)] = {\text{ }}amp;Q(q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)\,gt;\ln R,\ln V(T) \ge \ln D) = {\text{ }}amp;\frac{1}{4} + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} [\frac{{e^{{ - i\phi _{3} \ln R}} g(i\phi _{3} , - \gamma i\phi _{3} ,0)}}{{i\phi _{3} }}]{\text{d}}\phi _{3} + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} [\frac{{e^{{ - i\phi _{5} \ln D}} g(0,0,i\phi _{5} )}}{{i\phi _{5} }}]{\text{d}}\phi _{5} \; - \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( {{\text{Re}}[\frac{{e^{{ - i\phi _{3} \ln R - i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} ,i\phi _{5} )}}{{\phi _{3} \phi _{5} }}]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; - {\text{Re}}\Big [\frac{{e^{{ - i\phi _{3} \ln R + i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} , - i\phi _{5} )}}{{\phi _{3} \phi _{5} }}\Big ]} \right)} } {\text{d}}\phi _{3} {\text{d}}\phi _{5} , \end{aligned}$$
(37)

Then using the probability measures \(Q_2\), we obtain that

$$\begin{aligned} G_{4} & = E^{Q} \left[ {\prod\limits_{{i = 1}}^{m} {S_{i} } (T)^{{q_{i} }} 1\left( {e^{{t_{i} \sum\limits_{{i = 1}}^{m} {\ln \;} S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)}} \ge R,V(T) \ge D} \right)} \right] \\ & = E^{Q} \prod\limits_{{i = 1}}^{m} {S_{i} } (T)^{{q_{i} }} 1q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)\ln R,\ln V(T) \ge \ln D \\ & = \frac{1}{4}f(1,0,0) + \frac{1}{{2\pi }}\int_{0}^{\infty } {\text{Re} } \left[ {\frac{{e^{{ - i\phi _{3} \ln R}} g(i\phi _{3} + 1, - \gamma i\phi _{3} ,0)}}{{i\phi _{3} }}} \right]d\phi _{3} \\ & \quad + \frac{1}{{2\pi }}\int_{0}^{\infty } {\text{Re} } \left[ {\frac{{e^{{ - i\phi _{5} \ln D}} g(1,0,i\phi _{5} )}}{{i\phi _{5} }}} \right]d\phi _{5} \\ & \quad - \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( \begin{gathered} \text{Re} \left[ {\frac{{e^{{ - i\phi _{3} \ln R - i\phi _{5} \ln D}} g(i\phi _{3} + 1, - \gamma i\phi _{3} ,i\phi _{5} )}}{{\phi _{3} \phi _{5} }}} \right] \hfill \\ - \text{Re} \left[ {\frac{{e^{{ - i\phi _{3} \ln R + i\phi _{5} \ln D}} g(i\phi _{3} + 1, - \gamma i\phi _{3} , - i\phi _{5} )}}{{\phi _{3} \phi _{5} }}} \right] \hfill \\ \end{gathered} \right)} } d\phi _{3} d\phi _{5} , \\ \end{aligned}$$
(38)

and

$$\begin{gathered} G_{5} = E^{Q} \left[ {\prod\limits_{{i = 1}}^{m} {S_{i} } (T)^{{q_{i} }} V(T){\mathbf{1}}\left( {e^{{t_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)}} \ge R,V(T) < D} \right)} \right] \hfill \\ = E^{Q} \left[ {\prod\limits_{{i = 1}}^{m} {S_{i} } (T)^{{q_{i} }} V(T){\mathbf{1}}\left( {t_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T) > \ln R, - \ln V(T) > - \ln D} \right)} \right] \hfill \\ = \frac{1}{4}f(1,0,1) + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{ - i\phi _{3} \ln R}} g(i\phi _{3} + 1, - \gamma i\phi _{3} ,1)}}{{i\phi _{3} }}} \right]{\text{d}}\phi _{3} + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{i\phi _{5} \ln D}} g(1,0, - i\phi _{5} + 1)}}{{i\phi _{5} }}} \right]{\text{d}}\phi _{5} \; \hfill \\ - \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( {{\text{Re}}\left[ {\frac{{e^{{ - i\phi _{3} \ln R + i\phi _{5} \ln D}} g(i\phi _{3} + 1, - \gamma i\phi _{3} , - i\phi _{5} + 1)}}{{\phi _{3} \phi _{5} }}} \right] - {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{3} \ln R - i\phi _{5} \ln D}} g(i\phi _{3} + 1, - \gamma i\phi _{3} ,i\phi _{5} + 1)}}{{\phi _{3} \phi _{5} }}} \right]} \right)} } {\text{d}}\phi _{3} {\text{d}}\phi _{5} . \hfill \\ \end{gathered}$$
(39)

From the probability measure \(Q_3\), we have the following results,

$$\begin{aligned} G_{6} & = E^{Q} \left[ {\prod\limits_{{i = m + 1}}^{n} {S_{i} } (T)^{{p_{i} }} {\mathbf{1}}\left( {e^{{q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)}} \ge R,V(T) \ge D} \right)} \right] \\ & = E^{Q} \left[ {\prod\limits_{{i = m + 1}}^{n} {S_{i} } (T)^{{p_{i} }} {\mathbf{1}}\left( {q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)\ln R,\ln V(T) \ge \ln D} \right)} \right] \\ & = \frac{1}{4}f(0,1,0) + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{ - i\phi _{3} \ln R}} g(i\phi _{3} , - \gamma i\phi _{3} + 1,0)}}{{i\phi _{3} }}} \right]{\text{d}}\phi _{3} \\ & \quad + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{ - i\phi _{5} \ln D}} g(0,1,i\phi _{5} )}}{{i\phi _{5} }}} \right]{\text{d}}\phi _{5} \\ & \quad - \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( \begin{gathered} {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{3} \ln R - i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} + 1,i\phi _{5} )}}{{\phi _{3} \phi _{5} }}} \right] \hfill \\ - {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{3} \ln R + i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} + 1, - i\phi _{5} )}}{{\phi _{3} \phi _{5} }}} \right] \hfill \\ \end{gathered} \right)} } {\text{d}}\phi _{3} {\text{d}}\phi _{5} , \\ \end{aligned}$$
(40)

and

$$\begin{aligned} G_{7} = & E^{Q} \left[ {\prod\limits_{{i = m + 1}}^{n} {S_{i} } (T)^{{p_{i} }} V(T){\mathbf{1}}\left( {e^{{q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T)}} \ge R,V(T);D} \right)} \right] \\ = & E^{Q} \left[ {\prod\limits_{{i = m + 1}}^{n} {S_{i} } (T)^{{p_{i} }} V(T){\mathbf{1}}\left( {q_{i} \sum\limits_{{i = 1}}^{m} {\ln } S_{i} (T) - \gamma p_{i} \sum\limits_{{i = m + 1}}^{n} {\ln } S_{i} (T) > \ln R - \ln V(T) - \ln D} \right)} \right] \\ = & \frac{1}{4}f(0,1,1) + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{ - i\phi _{3} \ln K^{*} }} g(i\phi _{3} , - \gamma i\phi _{3} + 1,1)}}{{i\phi _{3} }}} \right]{\text{d}}\phi _{3} + \frac{1}{{2\pi }}\int_{0}^{\infty } {{\text{Re}}} \left[ {\frac{{e^{{i\phi _{5} \ln D}} g(0,1, - i\phi _{5} + 1)}}{{i\phi _{5} }}} \right]{\text{d}}\phi _{5} \; \\ - & \frac{1}{{2\pi ^{2} }}\int_{0}^{\infty } {\int_{0}^{\infty } {\left( {{\text{Re}}\left[ {\frac{{e^{{ - i\phi _{3} \ln R + i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} + 1, - i\phi _{5} + 1)}}{{\phi _{3} \phi _{5} }}} \right] - {\text{Re}}\left[ {\frac{{e^{{ - i\phi _{3} \ln R - i\phi _{5} \ln D}} g(i\phi _{3} , - \gamma i\phi _{3} + 1,i\phi _{5} + 1)}}{{\phi _{3} \phi _{5} }}} \right]} \right)} } {\text{d}}\phi _{3} {\text{d}}\phi _{5} . \\ \end{aligned}$$
(41)

This completes the proof of Proposition 2.2. \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Tang, D. & Wang, X. Pricing vulnerable basket spread options with liquidity risk. Rev Deriv Res 26, 23–50 (2023). https://doi.org/10.1007/s11147-022-09192-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-022-09192-0

Keywords

JEL Classification

Navigation