Skip to main content

Advertisement

Log in

Effects of Hydroxy Groups in Anthraquinone Dyes on Photocatalytic Activity of Visible-light-sensitized Pt-TiO2 for Hydrogen Evolution

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Alizarin (1,2-dihydroxyanthraquinone) is a stable red photoredox sensitizer. We explored the effect of the hydroxy substituents of 9,10-anthraquinone (AQ) molecules on the photocatalytic hydrogen evolution over a dye-sensitized Pt-TiO2 system under visible-light irradiation. The 2-hydroxy group in AQ dyes was necessary to induce photocatalytic H2 evolution. By contrast, the 1-hydroxy group was the anchoring group to increase the adsorption amount of the dyes on the TiO2 surface. Using time-resolved infrared spectroscopy, we found that the 2-hydroxy group enhances the electron injection and suppresses the back electron transfer from TiO2 particles to the dye.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  2. Hisatomi T, Domen K (2019) Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2:387–399

    Article  CAS  Google Scholar 

  3. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K (2020) Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581:411–414

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe K, Iwase A, Kudo A (2020) Solar water splitting over Rh0.5Cr1.5O3-loaded AgTaO3 of a valence-band-controlled metal oxide photocatalyst. Chem Sci 11:2330–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl Catal B 244:1021–1064

    Article  CAS  Google Scholar 

  6. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrog Energy 44:540–577

    Article  CAS  Google Scholar 

  7. Amano F, Nakata M, Vequizo JJM, Yamakata A (2019) Enhanced visible light response of TiO2 codoped with Cr and Ta photocatalysts by electron doping. ACS Appl Energy Mater 2:3274–3282

    Article  CAS  Google Scholar 

  8. Youngblood WJ, Anna Lee SH, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Peng T, Song S (2016) Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A 4:2365–2402

    Article  CAS  Google Scholar 

  10. Bae E, Choi W (2006) Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light. J Phys Chem B 110:14792–14799

    Article  CAS  PubMed  Google Scholar 

  11. Cecconi B, Manfredi N, Montini T, Fornasiero P, Abbotto A (2016) Dye-sensitized solar hydrogen production: The emerging role of metal-free organic sensitizers, Eur. J. Org. Chem., (2016) 5194–5215

  12. Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137:63–69

    Article  CAS  Google Scholar 

  13. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc 135:16872–16884

    Article  CAS  PubMed  Google Scholar 

  14. Abe R, Shinmei K, Hara K, Ohtani B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors,Chem. Commun.,3577–3579

  15. Huang JF, Lei Y, Luo T, Liu JM (2020) Photocatalytic H2 production from water by metal-free dye-sensitized TiO2 semiconductors: The role and development process of organic sensitizers, ChemSusChem, 135863–5895

  16. Zani L, Melchionna M, Montini T, Fornasiero P (2021) Design of dye-sensitized TiO2 materials for photocatalytic hydrogen production: Light and shadow. JPhys Energy 3:031001

    Article  CAS  Google Scholar 

  17. Maeda K, Sahara G, Eguchi M, Ishitani O (2015) Hybrids of a ruthenium(II) polypyridyl complex and a metal oxide nanosheet for dye-sensitized hydrogen evolution with visible light: Effects of the energy structure on photocatalytic activity. ACS Catal 5:1700–1707

    Article  CAS  Google Scholar 

  18. Ikeda S, Abe C, Torimoto T, Ohtani B (2003) Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. J Photochem Photobiol A 160:61–67

    Article  CAS  Google Scholar 

  19. Kamegawa T, Matsuura S, Seto H, Yamashita H (2013) A visible-light-harvesting assembly with a sulfocalixarene linker between dyes and a Pt-TiO2 photocatalyst. Angew Chem Int Ed 52:916–919

    Article  CAS  Google Scholar 

  20. Houlding VH, Gratzel M (1983) Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696

    Article  CAS  Google Scholar 

  21. Orchard KL, Hojo D, Sokol KP, Chan M-J, Asao N, Adschiri T, Reisner E (2017) Catechol–TiO2 hybrids for photocatalytic H2 production and photocathode assembly. Chem Commun 53:12638–12641

    Article  CAS  Google Scholar 

  22. Nawrocka A, Krawczyk S (2008) Electronic excited state of alizarin dye adsorbed on TiO2 nanoparticles: A study by electroabsorption (stark effect) spectroscopy. J Phys Chem C 112:10233–10241

    Article  CAS  Google Scholar 

  23. Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) Surface restructuring of nanoparticles: An efficient route for ligand – metal oxide crosstalk. J Phys Chem C 106:10543–10552

    Article  CAS  Google Scholar 

  24. Huber R, Spörlein S, Moser JE, Grätzel M, Wachtveitl J (2000) The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J Phys Chem B 104:8995–9003

    Article  CAS  Google Scholar 

  25. Matylitsky VV, Lenz MO, Wachtveitl J (2006) Observation of pH-dependent back-electron-transfer dynamics in alizarin/TiO2 adsorbates: Importance of trap states. J Phys Chem B 110:8372–8379

    Article  CAS  PubMed  Google Scholar 

  26. Kaniyankandy S, Verma S, Mondal JA, Palit DK, Ghosh HN (2009) Evidence of multiple electron injection and slow back electron transfer in alizarin-sensitized ultrasmall TiO2 particles. J Phys Chem C 113:3593–3599

    Article  Google Scholar 

  27. Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin – TiO2 interface. J Am Chem Soc 127:7941–7951

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Che Y, Ji H, Chen C, Zhu H, Ma W, Zhao J (2014) Ortho-dihydroxyl-9,10-anthraquinone dyes as visible-light sensitizers that exhibit a high turnover number for hydrogen evolution. Phys Chem Chem Phys 16:6550–6554

    Article  CAS  PubMed  Google Scholar 

  29. Lang X, Zhao J, Chen X (2016) Visible-light-induced photoredox catalysis of dye-sensitized titanium dioxide: Selective aerobic oxidation of organic sulfides. Angew Chem Int Ed 55:4697–4700

    Article  CAS  Google Scholar 

  30. Li X, Shi JL, Hao H, Lang X (2018) Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl Catal B 232:260–267

    Article  CAS  Google Scholar 

  31. Hao H, Li X, Lang X (2019) Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides. Appl Catal B 259:118038

    Article  CAS  Google Scholar 

  32. Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E, Hara K (2006) Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc 128:14256–14257

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z-S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, Kubo T, Furube A, Hara K (2008) Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar-cell performance by structural modification. Chem Mater 20:3993–4003

    Article  CAS  Google Scholar 

  34. Rumble JR (2019) CRC Handbook of Chemistry and Physics, 100th edn. CRC Press, Boca Raton

    Google Scholar 

  35. Olson DC, Margerum DW (1960) Ionization of ethylenediaminetetraacetic acid and its acid salts1. J Am Chem Soc 82:5602–5605

    Article  CAS  Google Scholar 

  36. Yamakata A, Ishibashi T, Onishi H (2001) Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: A time-resolved infrared absorption study. J Phys Chem C 105:7258–7262

    Article  CAS  Google Scholar 

  37. Yamakata A, Kawaguchi M, Nishimura N, Minegishi T, Kubota J, Domen K (2014) Behavior and energy states of photogenerated charge carriers on Pt- or CoOx-loaded LaTiO2N photocatalysts: Time-resolved visible to mid-infrared absorption study. J Phys Chem C 118:23897–23906

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI [grant numbers JP23655187, JP23686114, JP20H02525, and JP20H05838].

Author information

Authors and Affiliations

Authors

Contributions

Investigation and visualization, Fumiaki Amano, Yasukazu Akaki, and Akira Yamakata; Writing the original draft, Fumiaki Amano. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Fumiaki Amano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below Setup for photocatalytic reaction, Photograph of dye-sensitized photocatalysts powder, Photocatalytic activity test, UV–vis spectra. Supplementary data associated with this article can be found in the online version at

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amano, F., Akaki, Y. & Yamakata, A. Effects of Hydroxy Groups in Anthraquinone Dyes on Photocatalytic Activity of Visible-light-sensitized Pt-TiO2 for Hydrogen Evolution. Catal Surv Asia 27, 75–83 (2023). https://doi.org/10.1007/s10563-022-09370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09370-y

Keywords

Navigation