Skip to main content
Log in

Matching upper and lower moment bounds for a large class of stochastic PDEs driven by general space-time Gaussian noises

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this paper, we obtain matching upper and lower moment bounds for the solution to stochastic partial differential equation driven by a general Gaussian noise, giving a complete answer to the open problem of the matching lower moment bounds for the stochastic wave equations driven by a general Gaussian noise. Two new conditions are introduced for the Green’s function of the equation to assure this intermittency property: small ball nondegeneracy and bounded Hardy–Littlewood–Sobolev total mass, which are satisfied by a large class of stochastic PDEs, including stochastic heat equations, stochastic wave equations, stochastic heat equations with fractional Laplacians, and stochastic partial differential equations with fractional derivatives both in time and in space. The main technique to obtain the lower moment bounds is to develop a Feynman diagram formula for the moments of the solution, to find the manageable main terms, and to carefully analyse these terms of sophisticated multiple integrals by exploring the above two properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu, Y., Huang, J., Nualart, D., Sun, X.: Smoothness of the joint density for spatially homogeneous SPDEs. J. Math. Soc. Jpn. 67(4), 1605–1630 (2015). https://doi.org/10.2969/jmsj/06741605

    Article  MathSciNet  Google Scholar 

  2. Nualart, D., Quer-Sardanyons, L.: Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal. 27(3), 281–299 (2007). https://doi.org/10.1007/s11118-007-9055-3

    Article  MathSciNet  Google Scholar 

  3. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Am. Math. Soc. 108(518), 125 (1994). https://doi.org/10.1090/memo/0518

    Article  MathSciNet  Google Scholar 

  4. Khoshnevisan, D.: Analysis of stochastic partial differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 119, p. 116. Published for the Conference Board of the Mathematical Sciences, Washington; by the American Mathematical Society, Providence (2014). https://doi.org/10.1090/cbms/119

  5. Balan, R.M., Conus, D.: Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44(2), 1488–1534 (2016). https://doi.org/10.1214/15-AOP1005

    Article  MathSciNet  Google Scholar 

  6. Chen, L., Hu, Y., Kalbasi, K., Nualart, D.: Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise. Probab. Theory Related Fields 171(1–2), 431–457 (2018). https://doi.org/10.1007/s00440-017-0783-z

    Article  MathSciNet  Google Scholar 

  7. Chen, X.: Moment asymptotics for parabolic Anderson equation with fractional time-space noise: in Skorokhod regime. Ann. Inst. Henri Poincaré Probab. Stat. 53(2), 819–841 (2017). https://doi.org/10.1214/15-AIHP738

    Article  MathSciNet  Google Scholar 

  8. Chen, X., Hu, Y., Song, J., Song, X.: Temporal asymptotics for fractional parabolic Anderson model. Electron. J. Probab. 23, 14–39 (2018). https://doi.org/10.1214/18-EJP139

    Article  MathSciNet  Google Scholar 

  9. Chen, X., Hu, Y., Song, J., Xing, F.: Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat. 51(4), 1529–1561 (2015). https://doi.org/10.1214/13-AIHP588

    Article  ADS  MathSciNet  Google Scholar 

  10. Hu, Y., Huang, J., Lê, K., Nualart, D., Tindel, S.: Parabolic Anderson model with rough dependence in space. In: Computation and Combinatorics in Dynamics, Stochastics and Control. Abel Symp., vol. 13, pp. 477–498. Springer, Rosendal (2018)

  11. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20, 55–50 (2015). https://doi.org/10.1214/EJP.v20-3316

    Article  Google Scholar 

  12. Lyu, Y.: Precise high moment asymptotics for parabolic Anderson model with log-correlated Gaussian field. Stat. Probab. Lett. 158, 108662–12 (2020). https://doi.org/10.1016/j.spl.2019.108662

    Article  MathSciNet  Google Scholar 

  13. Hu, Y.: Some recent progress on stochastic heat equations. Acta Math. Sci. Ser. B (Engl. Ed.) 39(3), 874–914 (2019). https://doi.org/10.1007/s10473-019-0315-2

    Article  MathSciNet  Google Scholar 

  14. Khoshnevisan, D., Kim, K., Xiao, Y.: Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann. Probab. 45(6A), 3697–3751 (2017). https://doi.org/10.1214/16-AOP1147

    Article  MathSciNet  Google Scholar 

  15. Khoshnevisan, D., Kim, K., Xiao, Y.: A macroscopic multifractal analysis of parabolic stochastic PDEs. Commun. Math. Phys. 360(1), 307–346 (2018). https://doi.org/10.1007/s00220-018-3136-6

    Article  ADS  MathSciNet  Google Scholar 

  16. Conus, D., Joseph, M., Khoshnevisan, D.: Correlation-length bounds, and estimates for intermittent islands in parabolic SPDEs. Electron. J. Probab. 17, 102–15 (2012). https://doi.org/10.1214/EJP.v17-2429

    Article  MathSciNet  Google Scholar 

  17. Balan, R.M., Conus, D.: A note on intermittency for the fractional heat equation. Stat. Probab. Lett. 95, 6–14 (2014). https://doi.org/10.1016/j.spl.2014.08.001

    Article  MathSciNet  Google Scholar 

  18. Balan, R.M., Jolis, M., Quer-Sardanyons, L.: Intermittency for the hyperbolic Anderson model with rough noise in space. Stochast. Process. Appl. 127(7), 2316–2338 (2017). https://doi.org/10.1016/j.spa.2016.10.009

    Article  MathSciNet  Google Scholar 

  19. Chen, L., Hu, G., Hu, Y., Huang, J.: Space-time fractional diffusions in Gaussian noisy environment. Stochastics 89(1), 171–206 (2017). https://doi.org/10.1080/17442508.2016.1146282

    Article  MathSciNet  Google Scholar 

  20. Song, J., Song, X., Xu, F.: Fractional stochastic wave equation driven by a Gaussian noise rough in space. Bernoulli 26(4), 2699–2726 (2020). https://doi.org/10.3150/20-BEJ1204

    Article  MathSciNet  Google Scholar 

  21. Dalang, R.C., Mueller, C.: Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat. 45(4), 1150–1164 (2009). https://doi.org/10.1214/08-AIHP199

    Article  MathSciNet  Google Scholar 

  22. Dalang, R.C., Mueller, C., Tribe, R.: A Feynman–Kac-type formula for the deterministic and stochastic wave equations and other P.D.E.’s. Trans. Am. Math. Soc. 360(9), 4681–4703 (2008). https://doi.org/10.1090/S0002-9947-08-04351-1

    Article  MathSciNet  Google Scholar 

  23. Qian, R.: Intermittency property of stochastic heat and wave equation with dobrić-ojeda process. In: Talk in NSF-CBMS Conference. University of Alabama in Huntsville

  24. Balan, R.M., Chen, L., Chen, X.: Exact asymptotics of the stochastic wave equation with time-independent noise. arXiv preprint (2020). arXiv:2007.10203

  25. Chen, L., Eisenberg, N.: Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics. arXiv preprint (2021). arXiv:2108.11473

  26. Chen, Y., Hu, Y., Wang, Z.: Gradient and stability estimates of heat kernels for fractional powers of elliptic operator. Stat. Probab. Lett. 142, 44–49 (2018). https://doi.org/10.1016/j.spl.2018.07.003

    Article  MathSciNet  Google Scholar 

  27. Hu, Y.: Analysis on Gaussian Spaces, pp. 1–470. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017)

    Google Scholar 

  28. Hu, Y., Huang, J., Lê, K., Nualart, D., Tindel, S.: Stochastic heat equation with rough dependence in space. Ann. Probab. 45(6B), 4561–4616 (2017). https://doi.org/10.1214/16-AOP1172

    Article  MathSciNet  Google Scholar 

  29. Chen, L., Guo, Y., Song, J.: Moments and asymptotics for a class of SPDEs with space-time white noise. arXiv (2022). arXiv:2206.10069

  30. Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143(1–2), 285–328 (2009). https://doi.org/10.1007/s00440-007-0127-5

    Article  MathSciNet  Google Scholar 

  31. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications (New York), pp. 1–382. Springer, Berlin (2006)

  32. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, pp. 1–278. American Mathematical Society, Providence (1997). https://doi.org/10.2307/3621022

  33. Major, P.: On the Estimation of Multiple Random Integrals and \(U\)-statistics. Lecture Notes in Mathematics, vol. 2079, pp. 1–288. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37617-7

  34. Major, P.: Multiple Wiener-Itô Integrals, 2nd edn. Lecture Notes in Mathematics, vol. 849, pp. 1–126. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02642-8. With applications to limit theorems

  35. Gerhold, S.: Asymptotics for a variant of the Mittag–Leffler function. Integral Transforms Spec. Funct. 23(6), 397–403 (2012). https://doi.org/10.1080/10652469.2011.596151

    Article  MathSciNet  Google Scholar 

  36. Hu, Y., Nualart, D., Song, J.: Feynman–Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39(1), 291–326 (2011). https://doi.org/10.1214/10-AOP547

    Article  MathSciNet  Google Scholar 

  37. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 8th edn., pp. 1–1133. Elsevier/Academic Press, Amsterdam (2015). Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition [MR2360010]

  38. Mijena, J.B., Nane, E.: Space-time fractional stochastic partial differential equations. Stochast. Process. Appl. 125(9), 3301–3326 (2015). https://doi.org/10.1016/j.spa.2015.04.008

    Article  MathSciNet  Google Scholar 

  39. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, p. 523. Elsevier Science B.V., Amsterdam (2006)

  40. Kilbas, A.A., Saigo, M.: \(H\)-transforms. Analytical Methods and Special Functions, vol. 9, pp. 1–389. Chapman & Hall/CRC, Boca Raton (2004). https://doi.org/10.1201/9780203487372. Theory and applications

  41. Pskhu, A.V.: The fundamental solution of a diffusion-wave equation of fractional order. Izv. Ross. Akad. Nauk Ser. Mat. 73(2), 141–182 (2009). https://doi.org/10.1070/IM2009v073n02ABEH002450

    Article  MathSciNet  Google Scholar 

  42. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  Google Scholar 

  43. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \(E_{\alpha ,\beta }(z)\) and its derivative. vol. 5, pp. 491–518 (2002). Dedicated to the 60th anniversary of Prof. Francesco Mainardi

  44. Wang, J., Zhou, Y., O’Regan, D.: A note on asymptotic behaviour of Mittag–Leffler functions. Integral Transforms Spec. Funct. 29(2), 81–94 (2018). https://doi.org/10.1080/10652469.2017.1399373

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for the careful reading of the paper and for their constructive comments.

Funding

This work is supported by NSERC discovery fund, centennial fund of University of Alberta, and a research fund by Johns Hopkins University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, X. Matching upper and lower moment bounds for a large class of stochastic PDEs driven by general space-time Gaussian noises. Stoch PDE: Anal Comp 12, 1–52 (2024). https://doi.org/10.1007/s40072-022-00278-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-022-00278-2

Keywords

Mathematics Subject Classification

Navigation